Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Phys Rev Lett ; 132(5): 057102, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364150

RESUMO

The force autocorrelation function (FACF), a concept of fundamental interest in statistical mechanics, encodes the effect of interactions on the dynamics of a tagged particle. In equilibrium, the FACF is believed to decay monotonically in time, which is a signature of slowing down of the dynamics of the tagged particle due to interactions. Here, we analytically show that in odd-diffusive systems, which are characterized by a diffusion tensor with antisymmetric elements, the FACF can become negative and even exhibit temporal oscillations. We also demonstrate that, despite the isotropy, the knowledge of FACF alone is not sufficient to describe the dynamics: the full autocorrelation tensor is required and contains an antisymmetric part. These unusual properties translate into enhanced dynamics of the tagged particle quantified via the self-diffusion coefficient that, remarkably, increases due to particle interactions.

2.
Langmuir ; 40(5): 2487-2499, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38180486

RESUMO

The solvophobicity-driven directional self-assembly of polymer-coated gold nanorods is a well-established phenomenon. Yet, the kinetics of this process, the origin of site-selectivity in the self-assembly, and the interplay of (attractive) solvophobic brush interactions and (repulsive) electrostatic forces are not fully understood. Herein, we use a combination of time-resolved (vis/NIR) extinction spectroscopy and finite-difference time-domain (FDTD) simulations to determine conversion profiles for the assembly of gold nanorods with polystyrene shells of distinct thicknesses into their (tip-to-tip) self-assembled structures. In particular, we demonstrate that the assembly process is highly protracted compared with diffusion-controlled rates, and we find that the assembly rate varies for different thickness values of the polymer shell. Our findings were rationalized using coarse-grained molecular dynamics simulations, which also corroborated the tip-to-tip preference in the self-assembly process, albeit with a uniform polymer coating. Utilizing the knowledge of quantified conversion rates for distinct colloidal species, we designed coassembling systems with different brush thicknesses, featuring "narcissistic" self-sorting behavior. This provides new perspectives for high-level supracolloidal self-assembly.

3.
Urologie ; 63(1): 67-74, 2024 Jan.
Artigo em Alemão | MEDLINE | ID: mdl-37747493

RESUMO

BACKGROUND: In addition to erectile dysfunction, urinary incontinence is the most common functional limitation after radical prostatectomy (RPE) for prostate cancer (PCa). The German S3 guideline recommends informing patients about possible effects of the therapy options, including incontinence. However, only little data on continence from routine care in German-speaking countries after RPE are currently available, which makes it difficult to inform patients. OBJECTIVE: The aim of this work is to present data on the frequency and severity of urinary incontinence after RPE from routine care. MATERIALS AND METHODS: Information from the PCO (Prostate Cancer Outcomes) study is used, which was collected between 2016 and 2022 in 125 German Cancer Society (DKG)-certified prostate cancer centers in 17,149 patients using the Expanded Prostate Cancer Index Composite Short Form (EPIC-26). Changes in the "incontinence" score before (T0) and 12 months after RPE (T1) and the proportion of patients who used pads, stratified by age and risk group, are reported. RESULTS: The average score for urinary incontinence (value range: 0-worst possible to 100-best possible) was 93 points at T0 and 73 points 12 months later. At T0, 97% of the patients did not use a pad, compared to 56% at T1. 43% of the patients who did not use a pad before surgery used at least one pad a day 12 months later, while 13% use two or more. The proportion of patients using pads differs by age and risk classification. CONCLUSION: The results provide a comprehensive insight into functional outcome 12 months after RPE and can be taken into account when informing patients.


Assuntos
Disfunção Erétil , Neoplasias da Próstata , Incontinência Urinária , Masculino , Humanos , Incontinência Urinária/epidemiologia , Disfunção Erétil/epidemiologia , Neoplasias da Próstata/cirurgia , Prostatectomia/efeitos adversos
4.
Hum Brain Mapp ; 44(17): 6227-6244, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818950

RESUMO

When we perform an action, its sensory outcomes usually follow shortly after. This characteristic temporal relationship aids in distinguishing self- from externally generated sensory input. To preserve this ability under dynamically changing environmental conditions, our expectation of the timing between action and outcome must be able to recalibrate, for example, when the outcome is consistently delayed. Until now, it remains unclear whether this process, known as sensorimotor temporal recalibration, can be specifically attributed to recalibration of sensorimotor (action-outcome) predictions, or whether it may be partly due to the recalibration of expectations about the intersensory (e.g., audio-tactile) timing. Therefore, we investigated the behavioral and neural correlates of temporal recalibration and differences in sensorimotor and intersensory contexts. During fMRI, subjects were exposed to delayed or undelayed tones elicited by actively or passively generated button presses. While recalibration of the expected intersensory timing (i.e., between the tactile sensation during the button movement and the tones) can be expected to occur during both active and passive movements, recalibration of sensorimotor predictions should be limited to active movement conditions. Effects of this procedure on auditory temporal perception and the modality-transfer to visual perception were tested in a delay detection task. Across both contexts, we found recalibration to be associated with activations in hippocampus and cerebellum. Context-dependent differences emerged in terms of stronger behavioral recalibration effects in sensorimotor conditions and were captured by differential activation pattern in frontal cortices, cerebellum, and sensory processing regions. These findings highlight the role of the hippocampus in encoding and retrieving newly acquired temporal stimulus associations during temporal recalibration. Furthermore, recalibration-related activations in the cerebellum may reflect the retention of multiple representations of temporal stimulus associations across both contexts. Finally, we showed that sensorimotor predictions modulate recalibration-related processes in frontal, cerebellar, and sensory regions, which potentially account for the perceptual advantage of sensorimotor versus intersensory temporal recalibration.


Assuntos
Desempenho Psicomotor , Percepção do Tempo , Humanos , Desempenho Psicomotor/fisiologia , Retroalimentação , Percepção Visual/fisiologia , Percepção do Tempo/fisiologia , Percepção Auditiva , Tato
5.
Nature ; 618(7966): 733-739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344647

RESUMO

Control of adhesion is a striking feature of living matter that is of particular interest regarding technological translation1-3. We discovered that entropic repulsion caused by interfacial orientational fluctuations of cholesterol layers restricts protein adsorption and bacterial adhesion. Moreover, we found that intrinsically adhesive wax ester layers become similarly antibioadhesive when containing small quantities (under 10 wt%) of cholesterol. Wetting, adsorption and adhesion experiments, as well as atomistic simulations, showed that repulsive characteristics depend on the specific molecular structure of cholesterol that encodes a finely balanced fluctuating reorientation at the interface of unconstrained supramolecular assemblies: layers of cholesterol analogues differing only in minute molecular variations showed markedly different interfacial mobility and no antiadhesive effects. Also, orientationally fixed cholesterol layers did not resist bioadhesion. Our insights provide a conceptually new physicochemical perspective on biointerfaces and may guide future material design in regulation of adhesion.


Assuntos
Aderência Bacteriana , Colesterol , Entropia , Proteínas , Adsorção , Proteínas/química , Molhabilidade , Colesterol/química
6.
J Chem Phys ; 158(12): 124904, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003732

RESUMO

The Bond Fluctuation Model (BFM) is a highly efficient and versatile method for simulating polymers, membranes, and soft matter. Due to its coarse-grained nature, the BFM is employed to understand the universal properties of polymers. Solvent effects are often mediated by explicit solvent particles, while implicit solvent models have had limited use as they may lead to frozen states and, thus, ergodicity-related problems. In simulation setups, such as coagulated multiple homopolymers chains, explicit solvent models are computationally expensive because the region of interest can be localized in a small space compared to the dimension of the periodic box. We introduce an implicit solvent model based on an artificial neural network (NN) that was trained with BFM simulation data for single homopolymers in an explicit solvent. We demonstrate that NN-based simulations that take into account only the information of the local environment of monomers reproduce the expected universal macroscopic properties of the polymer under varying solvent conditions. The homopolymer chains simulated using the NN reproduce the coil-globule transition, the static and dynamic bond autocorrelation, and the mean square displacement of chain monomers. We show that the learned parameters from a single chain system can be transferred to a system containing multiple homopolymers, indicating that the learned parameters are transferable to considerably different systems.

7.
Macromol Biosci ; 23(6): e2200561, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060556

RESUMO

A model describing the binding of biological signaling proteins to highly charged polymer networks is presented. The networks are formed by polyelectrolyte chains for which the distance between two charges at the chain is smaller than the Bjerrum length. Counterion condensation on such highly charged chains immobilizes a part of the counterions. The Donnan-equilibrium between the polymer network and the aqueous solution with salt concentration c s b $c_s^b$ is used to calculate the salt concentration of the co- and counterions c s g $c_s^g$ entering the network. Two factors are decisive: i) The electrostatic interaction between the network and the protein is given by the Donnan-potential of the network and the net charge of the protein. In addition to this leading term, a second term describes the change in the Born-energy of the proteins when entering the network. ii) The interaction of the protein with the highly charged chains within the network is governed by counterion release: Patches of positive charge at the protein become multivalent counterions of the polyelectrolyte chains thus releasing a concomitant number of condensed counterions. The model compares favorably to experimental data obtained on a set of biohybrid polymer networks composed of crosslinked glycosaminoglycan chains that interact with a mixture of key signaling proteins.


Assuntos
Eletrólitos , Polímeros , Polieletrólitos , Citocinas , Termodinâmica
8.
Langmuir ; 39(14): 4872-4880, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36995334

RESUMO

Polymer brushes, i.e., end-tethered polymer chains on substrates, are sensitive to adaptation, e.g., swelling, adsorption, and reorientation of the surface molecules. This adaptation can originate from a contacting liquid or atmosphere for partially wetted substrates. The macroscopic contact angle of the aqueous drop can depend on both adaptation mechanisms. We analyze how the atmosphere around an aqueous droplet determines the resulting contact angle of the wetting droplet on polymer brush surfaces. Poly(N-isopropylacrylamide) (PNiPAAm)-based brushes are used due to their exceptional sensitivity to solvation and liquid mixture composition. We develop a method that reliably measures wetting properties when the drop and the surrounding atmosphere are not in equilibrium, e.g., when evaporation and condensation tend to contaminate the liquid of the drop and the atmosphere. For this purpose, we use a coaxial needle in the droplet, which continuously exchanges the wetting liquid, and in addition, we constantly exchange the almost saturated atmosphere. Depending on the wetting history, PNiPAAm can be prepared in two states, state A with a large water contact angle (∼65°) and state B with a small water contact angle (∼25°). With the coaxial needle, we can demonstrate that the water contact angle of a sample in state B significantly increases by ∼30° when a water-free atmosphere is almost saturated with ethanol, compared to an ethanol-free atmosphere at 50% relative humidity. For a sample in state A, the relative humidity has little influence on the water contact angle.

9.
J Chem Phys ; 157(13): 134902, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209024

RESUMO

While the behavior of active colloidal molecules is well studied now for constant activity, the effect of activity gradients is much less understood. Here, we explore one of the simplest molecules in activity gradients, namely active chiral dimers composed of two particles with opposite active torques of the same magnitude. We show analytically that with increasing torque, the dimer switches its behavior from antichemotactic to chemotactic. The origin of the emergent chemotaxis is the cooperative exploration of an activity gradient by the two particles. While one of the particles moves into higher activity regions, the other moves towards lower activity regions, resulting in a net bias in the direction of higher activity. We do a comparative study of chiral active particles with charged Brownian particles under a magnetic field and show that despite the fundamental similarity in terms of their odd-diffusive behavior, their dynamics and chemotactic behavior are generally not equivalent. We demonstrate this explicitly in a dimer composed of oppositely charged active particles, which remains antichemotactic to any magnetic field.


Assuntos
Quimiotaxia , Difusão , Torque
10.
J Chem Phys ; 157(10): 104902, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36109228

RESUMO

We consider polymer brushes in poor solvent that are grafted onto planar substrates and onto the internal and external surfaces of a cylinder using molecular dynamics simulation, self-consistent field (SCF), and mean-field theory. We derive a unified expression for the mean field free energy for the three geometrical classes. While for low grafting densities, the effect of chain elasticity can be neglected in poor solvent conditions, it becomes relevant at higher grafting densities and, in particular, for concave geometries. Based on the analysis of the end monomer distribution, we introduce an analytical term that describes the elasticity as a function of grafting density. The accuracy of the model is validated with molecular dynamics simulations as well as SCF computations and shown to yield precise values for the layer thickness over a wide range of system parameters. We further apply this model to analyze the gating behavior of switchable brushes inside nanochannels.

11.
Phys Rev Lett ; 129(9): 090601, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083684

RESUMO

It is generally believed that collisions of particles reduce the self-diffusion coefficient. Here we show that in odd-diffusive systems, which are characterized by diffusion tensors with antisymmetric elements, collisions surprisingly can enhance the self-diffusion. In these systems, due to an inherent curving effect, the motion of particles is facilitated, instead of hindered by collisions leading to a mutual rolling effect. Using a geometric model, we analytically predict the enhancement of the self-diffusion coefficient with increasing density. This counterintuitive behavior is demonstrated in the archetypal odd-diffusive system of Brownian particles under Lorentz force. We validate our findings by many-body Brownian dynamics simulations in dilute systems.

12.
Phys Rev E ; 106(1-1): 014617, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974656

RESUMO

We consider a rigid assembly of two active Brownian particles, forming an active colloidal dimer, in a gradient of activity. We show analytically that depending on the relative orientation of the two particles the active dimer accumulates in regions of either high or low activity, corresponding to, respectively, chemotaxis and antichemotaxis. Certain active dimers show both chemotactic and antichemotactic behavior, depending on the strength of the activity. Our coarse-grained Fokker-Planck approach yields an effective potential, which we use to construct a nonequilibrium phase diagram that classifies the dimers according to their tactic behavior. Moreover, we show that for certain dimers a higher persistence of the motion is achieved similar to the effect of a steering wheel in macroscopic devices. This work could be useful for designing autonomous active colloidal structures which adjust their motion depending on the local activity gradients.

13.
Sci Rep ; 12(1): 13405, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927292

RESUMO

We propose a mesoscopic Brownian magneto heat pump made of a single charged Brownian particle that is steered by an external magnetic field. The particle is subjected to two thermal noises from two different heat sources. When confined, the particle performs gyrating motion around a potential energy minimum. We show that such a magneto-gyrator can be operated as both a heat engine and a refrigerator. The maximum power delivered by the engine and the performance of the refrigerator, namely the rate of heat transferred per unit external work, can be tuned and optimised by the applied magnetic field. Further tunability of the key properties of the engine, such as the direction of gyration and the torque exerted by the engine on the confining potential, is obtained by varying the strength and direction of the applied magnetic field. In principle, our predictions can be tested by experiments with colloidal particles and complex plasmas.

14.
JAMA Psychiatry ; 79(10): 993-1003, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001327

RESUMO

Importance: Major depressive disorder (MDD) is characterized by a substantial burden on health, including changes in appetite and body weight. Heterogeneity of depressive symptoms has hampered the identification of biomarkers that robustly generalize to most patients, thus calling for symptom-based mapping. Objective: To define the functional architecture of the reward circuit subserving increases vs decreases in appetite and body weight in patients with MDD by specifying their contributions and influence on disease biomarkers using resting-state functional connectivity (FC). Design, Setting, and Participants: In this case-control study, functional magnetic resonance imaging (fMRI) data were taken from the Marburg-Münster FOR 2107 Affective Disorder Cohort Study (MACS), collected between September 2014 and November 2016. Cross-sectional data of patients with MDD (n = 407) and healthy control participants (n = 400) were analyzed from March 2018 to June 2022. Main Outcomes and Measures: Changes in appetite during the depressive episode and their association with FC were examined using fMRI. By taking the nucleus accumbens (NAcc) as seed of the reward circuit, associations with opposing changes in appetite were mapped, and a sparse symptom-specific elastic-net model was built with 10-fold cross-validation. Results: Among 407 patients with MDD, 249 (61.2%) were women, and the mean (SD) age was 36.79 (13.4) years. Reduced NAcc-based FC to the ventromedial prefrontal cortex (vmPFC) and the hippocampus was associated with reduced appetite (vmPFC: bootstrap r = 0.13; 95% CI, 0.02-0.23; hippocampus: bootstrap r = 0.15; 95% CI, 0.05-0.26). In contrast, reduced NAcc-based FC to the insular ingestive cortex was associated with increased appetite (bootstrap r = -0.14; 95% CI, -0.24 to -0.04). Critically, the cross-validated elastic-net model reflected changes in appetite based on NAcc FC and explained variance increased with increasing symptom severity (all patients: bootstrap r = 0.24; 95% CI, 0.16-0.31; patients with Beck Depression Inventory score of 28 or greater: bootstrap r = 0.42; 95% CI, 0.25-0.58). In contrast, NAcc FC did not classify diagnosis (MDD vs healthy control). Conclusions and Relevance: In this study, NAcc-based FC reflected important individual differences in appetite and body weight in patients with depression that can be leveraged for personalized prediction. However, classification of diagnosis using NAcc-based FC did not exceed chance levels. Such symptom-specific associations emphasize the need to map biomarkers onto more confined facets of psychopathology to improve the classification and treatment of MDD.


Assuntos
Transtorno Depressivo Maior , Núcleo Accumbens , Adulto , Apetite , Peso Corporal , Estudos de Casos e Controles , Estudos de Coortes , Estudos Transversais , Depressão/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Núcleo Accumbens/diagnóstico por imagem
15.
Soft Matter ; 18(30): 5598-5604, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857069

RESUMO

In molecular dynamics simulations we investigate the self-organized formation of droplets from a continuous flow of incoming nanoparticles. This transformation is facilitated by a cylindrical channel that is decorated with a polymer brush in a marginally poor solvent. We analyze droplet formation and propagation by means of simple scaling arguments which are tested in the simulations. Polymer brushes in marginally poor solvents serve as a pressure feedback system, exhibit a collapse transition under the moderate pressure of the incident flow, without the need for additional external stimuli, and finally close spontaneously after droplet passage. Our results qualitatively demonstrate the control of polymer brushes over continuous fluids and droplet formation, and its effectiveness as a means of fluid control can be used to design nanofluidic rectification devices that operate reliably under moderate pressure.

16.
Epilepsia Open ; 7(3): 518-524, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35766437

RESUMO

We report detailed functional MRI (fMRI) analyses in a patient with reflex seizures elicited by driving along a specific rural crossroad or by watching a video thereof. Semiology consisted of epigastric aura, followed by a sensory seizure of the left hand and sporadic automotor seizures. The right amygdala-region (rh-amygdala) was surgically and electroclinically confirmed as the epileptogenic zone. Presurgical task-fMRI was performed, during which videos of the driving along that specific crossroad (IC), of another crossroad (NC) or noise were presented. Independent component analysis was conducted, and one component was used to aid in selection of a seed region within the rh-amygdala for subsequent psychophysiological interaction analysis (PPI). Here, the following regions showed stronger connectivity with the rh-amygdala seed during the IC condition compared to NC: right > left visual cortex, bilateral insulae, and right secondary somatosensory cortex (S2), potentially explaining epigastric aura and left somatosensory seizure semiology. Contralateral analyses did not reproduce these results. Overall, the ictogenic stimulus elicited enhanced connectivity of the epileptogenic rh-amygdala with visual cortex and further regions of potential seizure spread (S2, insula) as a putative mechanism of ictogenesis. Our results highlight the potential of PPI in the analysis of stimulus-dependent networks in patients with reflex epilepsies to gain insight into seizure generation.


Assuntos
Epilepsias Parciais , Epilepsia Reflexa , Tonsila do Cerebelo/diagnóstico por imagem , Epilepsia Reflexa/diagnóstico , Humanos , Imageamento por Ressonância Magnética , Convulsões
17.
Psychiatry Res Neuroimaging ; 322: 111471, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378340

RESUMO

Although abnormal resting state connectivity within several brain networks has been repeatedly reported in depression, little is known about connectivity in patients with early onset chronic depression. We compared resting state connectivity in a homogenous sample of 32 unmedicated patients with early onset chronic depression and 40 healthy control participants in a seed-to-voxel-analysis. According to previous meta-analyses on resting state connectivity in depression, 12 regions implicated in default mode, limbic, frontoparietal and ventral attention networks were chosen as seeds. We also investigated associations between connectivity values and severity of depression. Patients with chronic depression exhibited stronger connectivity between precuneus and right pre-supplementary motor area than healthy control participants, possibly reflecting aberrant information processing and emotion regulation deficits in depression. Higher depression severity scores (Hamilton Rating Scale for Depression) were strongly and selectively associated with weaker connectivity between the precuneus and the subcallosal anterior cingulate. Our findings correspond to results obtained in studies including both episodic and chronic depression. This suggests that there may be no strong differences between subtypes of depression regarding the seeds analyzed here. To further clarify this issue, future studies should directly compare patients with different courses of depression.


Assuntos
Depressão , Transtorno Depressivo Maior , Encéfalo , Depressão/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Lobo Parietal/diagnóstico por imagem
18.
ACS Nano ; 16(2): 3383-3393, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35112848

RESUMO

Polymer brushes, consisting of densely end-tethered polymers to a surface, can exhibit rapid and sharp conformational transitions due to specific stimuli, which offer intriguing possibilities for surface-based sensing of the stimuli. The key toward unlocking these possibilities is the development of methods to readily transduce signals from polymer conformational changes. Herein, we report on single-fluorophore integrated ultrathin (<40 nm) polymer brush surfaces that exhibit changing fluorescence properties based on polymer conformation. The basis of our methods is the change in occupied volume as the polymer brush undergoes a collapse transition, which enhances the effective concentration and aggregation of the integrated fluorophores, leading to a self-quenching of the fluorophores' fluorescence and thereby reduced fluorescence lifetimes. By using fluorescence lifetime imaging microscopy, we reveal spatial details on polymer brush conformational transitions across complex interfaces, including at the air-water-solid interface and at the interface of immiscible liquids that solvate the surface. Furthermore, our method identifies the swelling of polymer brushes from outside of a direct droplet (i.e., the polymer phase with vapor above), which is controlled by humidity. These solvation-sensitive surfaces offer a strong potential for surface-based sensing of stimuli-induced phase transitions of polymer brushes with spatially resolved output in high resolution.

19.
Dev Neurobiol ; 82(1): 64-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676995

RESUMO

In the field of face processing, the so-called "core network" has been intensively researched. Its neural activity can be reliably detected in children and adults using functional magnetic resonance imaging (fMRI). However, the core network's counterpart, the so-called "extended network," has been less researched. In the present study, we compared children's and adults' brain activity in the extended system, in particular in the amygdala, the insula, and the inferior frontal gyrus (IFG). Using fMRI, we compared the brain activation pattern between children aged 7-9 years and adults during an emotional face processing task. On the one hand, children showed increased activity in the extended face processing system in relation to adults, particularly in the left amygdala, the right insula, and the left IFG. On the other hand, lateralization indices revealed a "leftward bias" in children's IFG compared to adults. These results suggest that brain activity associated with face processing is characterized by a developmental decrease in activity. They further show that the development is associated with a rightward migration of face-related IFG activation, possibly due to the competition for neural space between several developing brain functions ("developmental competition hypothesis").


Assuntos
Reconhecimento Facial , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Criança , Estudos Transversais , Reconhecimento Facial/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos
20.
PNAS Nexus ; 1(3): pgac119, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741452

RESUMO

While the dynamics of dimers and polymer chains in a viscous solvent is well understood within the celebrated Rouse model, the effect of an external magnetic field on the dynamics of a charged chain is much less understood. Here, we generalize the Rouse model for a charged dimer to include the effect of an external magnetic field. Our analytically solvable model allows a fundamental insight into the magneto-generated dynamics of the dimer in the overdamped limit as induced by the Lorentz force. Surprisingly, for a dimer of oppositely charged particles, we find an enormous enhancement of the dynamics of the dimer center, which exhibits even a transient superballistic behavior. This is highly unusual in an overdamped system for there is neither inertia nor any internal or external driving. We attribute this to a significant translation and rotation coupling due to the Lorentz force. We also find that magnetic field reduces the mobility of a dimer along its orientation and its effective rotational diffusion coefficient. In principle, our predictions can be tested by experiments with colloidal particles and complex plasmas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...