Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 18(5): 1584-1620, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36792779

RESUMO

Human early development sets the stage for embryonic and adult life but remains difficult to investigate. A solution came from the ability of stem cells to organize into structures resembling preimplantation embryos-blastocysts-that we termed blastoids. This embryo model is available in unlimited numbers and could thus support scientific and medical advances. However, its predictive power depends on how faithfully it recapitulates the blastocyst. Here, we describe how we formed human blastoids that (1) efficiently achieve the morphology of the blastocyst and (2) form lineages according to the pace and sequence of blastocyst development, (3) ultimately forming cells that transcriptionally reflect the blastocyst (preimplantation stage). We employ three different commercially available 96- and 24-well microwell plates with results similar to our custom-made ones, and show that blastoids form in clinical in vitro fertilization medium and can be cryopreserved for shipping. Finally, we explain how blastoids replicate the directional process of implantation into endometrial organoids, specifically when these are hormonally stimulated. It takes 4 d for human blastoids to form and 10 d to prepare the endometrial implantation assay, and we have cultured blastoids up to 6 d (time-equivalent of day 13). On the basis of our experience, we anticipate that a person with ~1 year of human pluripotent stem cell culture experience and of organoid culture should be able to perform the protocol. Altogether, blastoids offer an opportunity to establish scientific and biomedical discovery programs for early pregnancy, and an ethical alternative to the use of embryos.


Assuntos
Blastocisto , Implantação do Embrião , Gravidez , Adulto , Feminino , Humanos , Desenvolvimento Embrionário , Embrião de Mamíferos , Criopreservação
2.
Genome Res ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948369

RESUMO

The preconceptual, intrauterine, and early life environments can have a profound and long-lasting impact on the developmental trajectories and health outcomes of the offspring. Given the relatively low success rates of assisted reproductive technologies (ART; ∼25%), additives and adjuvants, such as glucocorticoids, are used to improve the success rate. Considering the dynamic developmental events that occur during this window, these exposures may alter blastocyst formation at a molecular level, and as such, affect not only the viability of the embryo and the ability of the blastocyst to implant, but also the developmental trajectory of the first three cell lineages, ultimately influencing the physiology of the embryo. In this study, we present a comprehensive single-cell transcriptome, methylome, and small RNA atlas in the day 7 human embryo. We show that, despite no change in morphology and developmental features, preimplantation glucocorticoid exposure reprograms the molecular profile of the TE lineage, and these changes are associated with an altered metabolic and inflammatory response. Our data also suggest that glucocorticoids can precociously mature the TE sublineages, supported by the presence of extravillous trophoblast markers in the polar sublineage and presence of X Chromosome dosage compensation. Further, we have elucidated that epigenetic regulation-DNA methylation and microRNAs (miRNAs)-likely underlies the transcriptional changes observed. This study suggests that exposures to exogenous compounds during preimplantation may unintentionally reprogram the human embryo, possibly leading to suboptimal development and longer-term health outcomes.

3.
J Vis Exp ; (186)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36036618

RESUMO

A model of the human blastocyst formed from stem cells (blastoid) would support scientific and medical advances. However, its predictive power will depend on its ability to efficiently, timely, and faithfully recapitulate the sequences of blastocyst development (morphogenesis, specification, patterning), and to form cells reflecting the blastocyst stage. Here we show that naïve human pluripotent stem cells cultured in PXGL conditions and then triply inhibited for the Hippo, transforming growth factor- ß, and extracellular signal-regulated kinase pathways efficiently undergo morphogenesis to form blastoids (>70%). Matching with developmental timing (~4 days), blastoids unroll the blastocyst sequence of specification by producing analogs of the trophoblast and epiblast, followed by the formation of analogs of the primitive endoderm and the polar trophoblasts. This results in the formation of cells transcriptionally similar to the blastocyst (>96%) and a minority of post-implantation analogs. Blastoids efficiently pattern by forming the embryonic-abembryonic axis marked by the maturation of the polar region (NR2F2+), which acquires the specific potential to directionally attach to hormonally stimulated endometrial cells, as in utero. Such a human blastoid is a scalable, versatile, and ethical model to study human development and implantation in vitro.


Assuntos
Implantação do Embrião , Desenvolvimento Embrionário , Blastocisto , Diferenciação Celular , Linhagem da Célula , Endoderma , Feminino , Camadas Germinativas , Humanos
4.
Nature ; 601(7894): 600-605, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856602

RESUMO

One week after fertilization, human embryos implant into the uterus. This event requires the embryo to form a blastocyst consisting of a sphere encircling a cavity lodging the embryo proper. Stem cells can form a blastocyst model that we called a blastoid1. Here we show that naive human pluripotent stem cells cultured in PXGL medium2 and triply inhibited for the Hippo, TGF-ß and ERK pathways efficiently (with more than 70% efficiency) form blastoids generating blastocyst-stage analogues of the three founding lineages (more than 97% trophectoderm, epiblast and primitive endoderm) according to the sequence and timing of blastocyst development. Blastoids spontaneously form the first axis, and we observe that the epiblast induces the local maturation of the polar trophectoderm, thereby endowing blastoids with the capacity to directionally attach to hormonally stimulated endometrial cells, as during implantation. Thus, we propose that such a human blastoid is a faithful, scalable and ethical model for investigating human implantation and development3,4.


Assuntos
Blastocisto , Células-Tronco Pluripotentes , Blastocisto/metabolismo , Diferenciação Celular , Linhagem da Célula , Implantação do Embrião , Desenvolvimento Embrionário , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...