Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731811

RESUMO

Recently studied N-(ß-d-glucopyranosyl)-3-aryl-1,2,4-triazole-5-carboxamides have proven to be low micromolar inhibitors of glycogen phosphorylase (GP), a validated target for the treatment of type 2 diabetes mellitus. Since in other settings, the bioisosteric replacement of the 1,2,4-triazole moiety with imidazole resulted in significantly more efficient GP inhibitors, in silico calculations using Glide molecular docking along with unbound state DFT calculations were performed on N-(ß-d-glucopyranosyl)-arylimidazole-carboxamides, revealing their potential for strong GP inhibition. The syntheses of the target compounds involved the formation of an amide bond between per-O-acetylated ß-d-glucopyranosylamine and the corresponding arylimidazole-carboxylic acids. Kinetics experiments on rabbit muscle GPb revealed low micromolar inhibitors, with the best inhibition constants (Kis) of ~3-4 µM obtained for 1- and 2-naphthyl-substituted N-(ß-d-glucopyranosyl)-imidazolecarboxamides, 2b-c. The predicted protein-ligand interactions responsible for the observed potencies are discussed and will facilitate the structure-based design of other inhibitors targeting this important therapeutic target. Meanwhile, the importance of the careful consideration of ligand tautomeric states in binding calculations is highlighted, with the usefulness of DFT calculations in this regard proposed.


Assuntos
Inibidores Enzimáticos , Glicogênio Fosforilase , Imidazóis , Simulação de Acoplamento Molecular , Cinética , Coelhos , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Glicogênio Fosforilase/antagonistas & inibidores , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/química , Imidazóis/química , Imidazóis/síntese química , Imidazóis/farmacologia , Simulação por Computador , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química
2.
J Med Chem ; 66(17): 12420-12431, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37658813

RESUMO

Galectin-3 is involved in multiple pathways of many diseases, including cancer, fibrosis, and diabetes, and it is a validated pharmaceutical target for the development of novel therapeutic agents to address unmet medical needs. Novel 1,2-thiodisaccharides with a C-glycosylic functionality were synthesized by the photoinitiated thiol-ene click reaction of O-peracylated 1-C-substituted glycals and 1-thio-glycopyranoses. Subsequent global deprotection yielded test compounds, which were studied for their binding to human galectin-3 by fluorescence polarization and isothermal titration calorimetry to show low micromolar Kd values. The best inhibitor displayed a Kd value of 8.0 µM. An analysis of the thermodynamic binding parameters revealed that the binding Gibbs free energy (ΔG) of the new inhibitors was dominated by enthalpy (ΔH). The binding mode of the four most efficient 1,2-thiodisaccharides was also studied by X-ray crystallography that uncovered the unique role of water-mediated hydrogen bonds in conferring enthalpy-driven affinity enhancement for the new inhibitors. This 1,2-thiodisaccharide-type scaffold represents a new lead for galectin-3 inhibitor discovery and offers several possibilities for further development.


Assuntos
Galectina 3 , Galectinas , Humanos , Ligação de Hidrogênio , Termodinâmica , Água
3.
Carbohydr Res ; 529: 108825, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37253301

RESUMO

Azidohydroxylation of 1-carbamoyl, 1-methoxycarbonyl and 1-cyano substituted d-lyxo and d-arabino configured O-peracylated glycals was studied and the reaction conditions were optimized. Under these conditions (3 equiv. NaN3/2 equiv. PIFA/0.3 equiv. TEMPO/50 equiv. H2O/dry DCM/0 °C/Ar) the expected 3-azido-3-deoxy ulopyranosonic acid derivatives were isolated in good yield with α-d-galacto configuration exclusively from the reaction of the 1-carbamoyl and 1-methoxycarbonyl substituted d-lyxo configured O-peracetylated glycals, while the transformation of the 1-cyano derivative gave a 2,3-vicinal diazide in low yield. The 1-carbamoyl d-arabino configured O-perbenzoylated glycal gave a mixture of α-d-gluco and α-d-manno configured azidohydroxylated products with d-gluco preference. The analogous 1-methoxycarbonyl derivative gave an inseparable product mixture and no transformation was detected with the respective 1-cyano glycal.

4.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049768

RESUMO

Glycogen phosphorylase (GP) is a key regulator of glucose levels and, with that, an important target for the discovery of novel treatments against type 2 diabetes. ß-d-Glucopyranosyl derivatives have provided some of the most potent GP inhibitors discovered to date. In this regard, C-ß-d-glucopyranosyl azole type inhibitors proved to be particularly effective, with 2- and 4-ß-d-glucopyranosyl imidazoles among the most potent designed to date. His377 backbone C=O hydrogen bonding and ion-ion interactions of the protonated imidazole with Asp283 from the 280s loop, stabilizing the inactive state, were proposed as crucial to the observed potencies. Towards further exploring these features, 4-amino-3-(ß-d-glucopyranosyl)-5-phenyl-1H-pyrazole (3) and 3-(ß-d-glucopyranosyl)-4-guanidino-5-phenyl-1H-pyrazole (4) were designed and synthesized with the potential to exploit similar interactions. Binding assay experiments against rabbit muscle GPb revealed 3 as a moderate inhibitor (IC50 = 565 µM), but 4 displayed no inhibition at 625 µM concentration. Towards understanding the observed inhibitions, docking and post-docking molecular mechanics-generalized Born surface area (MM-GBSA) binding free energy calculations were performed, together with Monte Carlo and density functional theory (DFT) calculations on the free unbound ligands. The computations revealed that while 3 was predicted to hydrogen bond with His377 C=O in its favoured tautomeric state, the interactions with Asp283 were not direct and there were no ion-ion interactions; for 4, the most stable tautomer did not have the His377 backbone C=O interaction and while ion-ion interactions and direct hydrogen bonding with Asp283 were predicted, the conformational strain and entropy loss of the ligand in the bound state was significant. The importance of consideration of tautomeric states and ligand strain for glucose analogues in the confined space of the catalytic site with the 280s loop in the closed position was highlighted.


Assuntos
Glicogênio Fosforilase , Pirazóis , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Glicogênio Fosforilase/metabolismo , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Método de Monte Carlo , Conformação Molecular , Glucose/análogos & derivados , Glucose/química , Glucose/metabolismo , Glucose/farmacologia , Diabetes Mellitus Tipo 2
5.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049820

RESUMO

While platinum-based compounds such as cisplatin form the backbone of chemotherapy, the use of these compounds is limited by resistance and toxicity, driving the development of novel complexes with cytostatic properties. In this study, we synthesized a set of half-sandwich complexes of platinum-group metal ions (Ru(II), Os(II), Ir(III) and Rh(III)) with an N,N-bidentate ligand comprising a C-glucosaminyl group and a heterocycle, such as pyridine, pyridazine, pyrimidine, pyrazine or quinoline. The sugar-containing ligands themselves are unknown compounds and were obtained by nucleophilic additions of lithiated heterocycles to O-perbenzylated 2-nitro-glucal. Reduction of the adducts and, where necessary, subsequent protecting group manipulations furnished the above C-glucosaminyl heterocycles in their O-perbenzylated, O-perbenzoylated and O-unprotected forms. The derived complexes were tested on A2780 ovarian cancer cells. Pyridine, pyrazine and pyridazine-containing complexes proved to be cytostatic and cytotoxic on A2780 cells, while pyrimidine and quinoline derivatives were inactive. The best complexes contained pyridine as the heterocycle. The metal ion with polyhapto arene/arenyl moiety also impacted on the biological activity of the complexes. Ruthenium complexes with p-cymene and iridium complexes with Cp* had the best performance in ovarian cancer cells, followed by osmium complexes with p-cymene and rhodium complexes with Cp*. Finally, the chemical nature of the protective groups on the hydroxyl groups of the carbohydrate moiety were also key determinants of bioactivity; in particular, O-benzyl groups were superior to O-benzoyl groups. The IC50 values of the complexes were in the low micromolar range, and, importantly, the complexes were less active against primary, untransformed human dermal fibroblasts; however, the anticipated therapeutic window is narrow. The bioactive complexes exerted cytostasis on a set of carcinomas such as cell models of glioblastoma, as well as breast and pancreatic cancers. Furthermore, the same complexes exhibited bacteriostatic properties against multiresistant Gram-positive Staphylococcus aureus and Enterococcus clinical isolates in the low micromolar range.


Assuntos
Anti-Infecciosos , Antineoplásicos , Complexos de Coordenação , Citostáticos , Neoplasias Ovarianas , Quinolinas , Rutênio , Humanos , Feminino , Complexos de Coordenação/química , Citostáticos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/química , Metais , Compostos Azo/uso terapêutico , Quinolinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Rutênio/química
6.
Front Chem ; 11: 1086267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793764

RESUMO

The toxicity of and resistance to platinum complexes as cisplatin, oxaliplatin or carboplatin calls for the replacement of these therapeutic agents in clinical settings. We have previously identified a set of half sandwich-type osmium, ruthenium and iridium complexes with bidentate glycosyl heterocyclic ligands exerting specific cytostatic activity on cancer cells but not on non-transformed primary cells. The apolar nature of the complexes, conferred by large, apolar benzoyl protective groups on the hydroxyl groups of the carbohydrate moiety, was the main molecular feature to induce cytostasis. We exchanged the benzoyl protective groups to straight chain alkanoyl groups with varying length (3 to 7 carbon units) that increased the IC50 value as compared to the benzoyl-protected complexes and rendered the complexes toxic. These results suggest a need for aromatic groups in the molecule. The pyridine moiety of the bidentate ligand was exchanged for a quinoline group to enlarge the apolar surface of the molecule. This modification decreased the IC50 value of the complexes. The complexes containing [(η6-p-cymene)Ru(II)], [(η6-p-cymene)Os(II)] or [(η5-Cp*)Ir(III)] were biologically active unlike the complex containing [(η5-Cp*)Rh(III)]. The complexes with cytostatic activity were active on ovarian cancer (A2780, ID8), pancreatic adenocarcinoma (Capan2), sarcoma (Saos) and lymphoma cell lines (L428), but not on primary dermal fibroblasts and their activity was dependent on reactive oxygen species production. Importantly, these complexes were cytostatic on cisplatin-resistant A2780 ovarian cancer cells with similar IC50 values as on cisplatin-sensitive A2780 cells. In addition, the quinoline-containing Ru and Os complexes and the short chain alkanoyl-modified complexes (C3 and C4) proved to be bacteriostatic in multiresistant Gram-positive Enterococcus and Staphylococcus aureus isolates. Hereby, we identified a set of complexes with submicromolar to low micromolar inhibitory constants against a wide range of cancer cells, including platinum resistant cells and against multiresistant Gram-positive bacteria.

7.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431884

RESUMO

Glycosylidene-spiro-morpholin(on)es are scarcely described skeletons in the literature. In this work, we have systematically explored the synthetic routes towards such morpholinones based on the reactions of O-peracylated hept-2-ulopyranosonamide derivatives of D-gluco and D-galacto configuration. Koenigs-Knorr type glycosylation of 2-chloroethanol, allylic and propargylic alcohols by (glyculosylbromide)onamides furnished the expected glycosides. The 2-chloroethyl glycosides were ring closed to the corresponding spiro-morpholinones by treatment with K2CO3. The (allyl glyculosid)onamides gave diastereomeric mixtures of spiro-5-hydroxymorpholinones by ozonolysis and 5-iodomethylmorpholinones under iodonium ion mediated conditions. The ozonolytic method has not yet been known for the construction of morpholine rings, therefore, it was also extended to O-allyl mandelamide. The 5-hydroxymorpholinones were subjected to oxidation and acid catalyzed elimination reactions to give the corresponding morpholine-3,5-dions and 5,6-didehydro-morpholin-3-ones, respectively. Base induced elimination of the 5-iodomethylmorpholinones gave 5-methyl-2H-1,4-oxazin-3(4H)-ones. O-Acyl protecting groups of all of the above compounds were removed under Zemplén conditions. Some of the D-gluco configured unprotected compounds were tested as inhibitors of glycogen phosphorylase, but showed no significant effect.


Assuntos
Glicogênio Fosforilase , Morfolinas , Glicosídeos , Glicosilação
8.
Molecules ; 27(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431902

RESUMO

C-glycopyranosyl derivatives of six-membered heterocycles are scarcely represented in the chemical literature and the title 3-glycopyranosyl-1,2,4-triazines are completely unknown. In this paper, the first synthesis of this compound class is accomplished by the cyclocondensation of C-glycosyl formamidrazones and 1,2-dicarbonyl derivatives. In addition, the synthesis of C-glycopyranosyl 1,2,4-triazin-5(4H)-ones was also carried out by the transformation of the above formamidrazones with α-keto-carboxylic esters. Inverse electron demand Diels-Alder reactions of 3-glycopyranosyl-1,2,4-triazines with a bicyclononyne derivative yielded the corresponding annulated 2-glycopyranosyl pyridines.


Assuntos
Elétrons , Triazinas , Reação de Cicloadição , Triazinas/química , Ciclização , Piridinas/química
9.
Carbohydr Res ; 519: 108582, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35704963

RESUMO

The reactivity of O-peracetylated and O-perbenzoylated 1-COOMe, 1-CONH2 and 1-CN-substituted glycals was studied against O-, S-, N- and C-nucleophiles in the presence of Lewis acids. Allylic substituted products with exclusive axial stereoselectivity were formed with simple alcohols, N3-, and Cl- ions, but with benzyl thiol the Ferrier rearrangement took place and thioglycosides were obtained. The use of a sugar derived thiol resulted in the formation of both the allylic substituted and the rearranged products.


Assuntos
Tioglicosídeos , Álcoois , Carboidratos , Estereoisomerismo , Compostos de Sulfidrila
10.
Front Chem ; 10: 868234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494644

RESUMO

Bacterial resistance to antibiotics is an ever-growing problem in heathcare. We have previously identified a set of osmium(II), ruthenium(II), iridium(III) and rhodium(III) half-sandwich type complexes with bidentate monosaccharide ligands possessing cytostatic properties against carcinoma, lymphoma and sarcoma cells with low micromolar or submicromolar IC50 values. Importantly, these complexes were not active on primary, non-transformed cells. These complexes have now been assessed as to their antimicrobial properties and found to be potent inhibitors of the growth of reference strains of Staphylococcus aureus and Enterococcus faecalis (Gram-positive species), though the compounds proved inactive on reference strains of Pseudomonas aerugonisa, Escherichia coli, Candida albicans, Candida auris and Acinetobacter baumannii (Gram-negative species and fungi). Furthermore, clinical isolates of Staphylococcus aureus and Enterococcus sp. (both multiresistant and susceptible strains) were also susceptible to the organometallic complexes in this study with similar MIC values as the reference strains. Taken together, we identified a set of osmium(II), ruthenium(II), iridium(III) and rhodium(III) half-sandwich type antineoplastic organometallic complexes which also have antimicrobial activity among Gram-positive bacteria. These compounds represent a novel class of antimicrobial agents that are not detoxified by multiresistant bacteria suggesting a potential to be used to combat multiresistant infections.

11.
Molecules ; 27(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335162

RESUMO

A catalyst-free coupling reaction between O-peracetylated, O-perbenzoylated, O-permethylated, and O-permethoxymethylated 2,6-anhydro-aldose tosylhydrazones (C-(ß-d-glycopyranosyl)formaldehyde tosylhydrazones) and aromatic boronic acids is reported. The base-promoted reaction is operationally simple and exhibits a broad substrate scope. The main products in most of the transformations were open-chain 1-C-aryl-hept-1-enitol type compounds while the expected ß-d-glycopyranosylmethyl arenes (benzyl C-glycosides) were formed in subordinate yields only. A mechanistic rationale is provided to explain how a complex substrate may change the well-established course of the reaction.


Assuntos
Ácidos Borônicos , Monossacarídeos , Aldeídos , Catálise , Glicosídeos/química
12.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162960

RESUMO

Inhibition of the human O-linked ß-N-acetylglucosaminidase (hOGA, GH84) enzyme is pharmacologically relevant in several diseases such as neurodegenerative and cardiovascular disorders, type 2 diabetes, and cancer. Human lysosomal hexosaminidases (hHexA and hHexB, GH20) are mechanistically related enzymes; therefore, selective inhibition of these enzymes is crucial in terms of potential applications. In order to extend the structure-activity relationships of OGA inhibitors, a series of 2-acetamido-2-deoxy-d-glucono-1,5-lactone sulfonylhydrazones was prepared from d-glucosamine. The synthetic sequence involved condensation of N-acetyl-3,4,6-tri-O-acetyl-d-glucosamine with arenesulfonylhydrazines, followed by MnO2 oxidation to the corresponding glucono-1,5-lactone sulfonylhydrazones. Removal of the O-acetyl protecting groups by NH3/MeOH furnished the test compounds. Evaluation of these compounds by enzyme kinetic methods against hOGA and hHexB revealed potent nanomolar competitive inhibition of both enzymes, with no significant selectivity towards either. The most efficient inhibitor of hOGA was 2-acetamido-2-deoxy-d-glucono-1,5-lactone 1-naphthalenesulfonylhydrazone (5f, Ki = 27 nM). This compound had a Ki of 6.8 nM towards hHexB. To assess the binding mode of these inhibitors to hOGA, computational studies (Prime protein-ligand refinement and QM/MM optimizations) were performed, which suggested the binding preference of the glucono-1,5-lactone sulfonylhydrazones in an s-cis conformation for all test compounds.


Assuntos
Antígenos de Neoplasias/química , Histona Acetiltransferases/química , Hialuronoglucosaminidase/química , Hidrazonas/síntese química , Lactonas/química , Cadeia beta da beta-Hexosaminidase/química , Antígenos de Neoplasias/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/metabolismo , Humanos , Hialuronoglucosaminidase/metabolismo , Hidrazonas/química , Hidrazonas/farmacologia , Compostos de Manganês/química , Modelos Moleculares , Conformação Molecular , Óxidos/química , Relação Estrutura-Atividade , Cadeia beta da beta-Hexosaminidase/metabolismo
13.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054999

RESUMO

Platinum complexes are used in chemotherapy, primarily as antineoplastic agents. In this study, we assessed the cytotoxic and cytostatic properties of a set of osmium(II), ruthenium(II), iridium(III) and rhodium(III) half-sandwich-type complexes with bidentate monosaccharide ligands. We identified 5 compounds with moderate to negligible acute cytotoxicity but with potent long-term cytostatic activity. These structure-activity relationship studies revealed that: (1) osmium(II) p-cymene complexes were active in all models, while rhodium(III) and iridium(III) Cp* complexes proved largely inactive; (2) the biological effect was influenced by the nature of the central azole ring of the ligands-1,2,3-triazole was the most effective, followed by 1,3,4-oxadiazole, while the isomeric 1,2,4-oxadiazole abolished the cytostatic activity; (3) we found a correlation between the hydrophobic character of the complexes and their cytostatic activity: compounds with O-benzoyl protective groups on the carbohydrate moiety were active, compared to O-deprotected ones. The best compound, an osmium(II) complex, had an IC50 value of 0.70 µM. Furthermore, the steepness of the inhibitory curve of the active complexes suggested cooperative binding; cooperative molecules were better inhibitors than non-cooperative ones. The cytostatic activity of the active complexes was abolished by a lipid-soluble antioxidant, vitamin E, suggesting that oxidative stress plays a major role in the biological activity of the complexes. The complexes were active on ovarian cancer, pancreatic adenocarcinoma, osteosarcoma and Hodgkin's lymphoma cells, but were inactive on primary, non-transformed human fibroblasts, indicating their applicability as potential anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Metais Pesados/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Irídio , Ligantes , Metais Pesados/química , Modelos Moleculares , Estrutura Molecular , Osmio , Ródio , Rutênio , Relação Estrutura-Atividade
14.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638791

RESUMO

Ruthenium complexes are developed as substitutes for platinum complexes to be used in the chemotherapy of hematological and gynecological malignancies, such as ovarian cancer. We synthesized and screened 14 ruthenium half-sandwich complexes with bidentate monosaccharide ligands in ovarian cancer cell models. Four complexes were cytostatic, but not cytotoxic on A2780 and ID8 cells. The IC50 values were in the low micromolar range (the best being 0.87 µM) and were similar to or lower than those of the clinically available platinum complexes. The active complexes were cytostatic in cell models of glioblastoma, breast cancer, and pancreatic adenocarcinoma, while they were not cytostatic on non-transformed human skin fibroblasts. The bioactive ruthenium complexes showed cooperative binding to yet unidentified cellular target(s), and their activity was dependent on reactive oxygen species production. Large hydrophobic protective groups on the hydroxyl groups of the sugar moiety were needed for biological activity. The cytostatic activity of the ruthenium complexes was dependent on reactive species production. Rucaparib, a PARP inhibitor, potentiated the effects of ruthenium complexes.


Assuntos
Neoplasias/tratamento farmacológico , Compostos de Rutênio/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Espécies Reativas de Oxigênio , Compostos de Rutênio/síntese química , Compostos de Rutênio/química , Compostos de Rutênio/uso terapêutico
15.
Eur J Med Chem ; 223: 113649, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34186233

RESUMO

O-GlcNAcylation is a dynamic post-translational modification mediated by O-linked ß-N-acetylglucosamine transferase (OGT) and O-GlcNAc hydrolase (OGA), that adds or removes a single ß-N-acetylglucosamine (GlcNAc) moiety to or from serine/threonine residues of nucleocytosolic and mitochondrial proteins, respectively. The perturbed homeostasis of O-GlcNAc cycling results in several pathological conditions. Human OGA is a promising therapeutic target in diseases where aberrantly low levels of O-GlcNAc are experienced, such as tauopathy in Alzheimer's disease. A new class of potent OGA inhibitors, 2-acetamido-2-deoxy-d-glucono-1,5-lactone (thio)semicarbazones, have been identified. Eight inhibitors were designed and synthesized in five steps starting from d-glucosamine and with 15-55% overall yields. A heterologous OGA expression protocol with strain selection and isolation has been optimized that resulted in stable, active and full length human OGA (hOGA) isomorph. Thermal denaturation kinetics of hOGA revealed environmental factors affecting hOGA stability. From kinetics experiments, the synthesized compounds proved to be efficient competitive inhibitors of hOGA with Ki-s in the range of ∼30-250 nM and moderate selectivity with respect to lysosomal ß-hexosaminidases. In silico studies consisting of Prime protein-ligand refinements, QM/MM optimizations and QM/MM-PBSA binding free energy calculations revealed the factors governing the observed potencies, and led to design of the most potent analogue 2-acetamido-2-deoxy-d-glucono-1,5-lactone 4-(2-naphthyl)-semicarbazone 6g (Ki = 36 nM). The protocol employed has applications in future structure based inhibitor design targeting OGA.


Assuntos
Antígenos de Neoplasias/metabolismo , Inibidores Enzimáticos/química , Histona Acetiltransferases/metabolismo , Hialuronoglucosaminidase/metabolismo , Lactonas/química , Semicarbazonas/química , Antígenos de Neoplasias/genética , Sítios de Ligação , Inibidores Enzimáticos/metabolismo , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Humanos , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/genética , Cinética , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Estabilidade Proteica , Teoria Quântica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Semicarbazonas/metabolismo , Relação Estrutura-Atividade
16.
Carbohydr Res ; 504: 108292, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33940310

RESUMO

Addition of bromine and chlorine to O-peracylated 1-CN-, COOMe- and CONH2-substituted glycals was studied under ionic and radical conditions. The main or exclusive products were the corresponding 2,3-trans-diaxial (3-bromo-3-deoxy-α-d-heptopyranosylbromide)onic acid derivatives. Bromination of the O-peracetylated d-lyxo-hept-2-enopyranosononitrile and all chlorinations proved selective towards the 2-axial-3-equatorial (3-halogeno-3-deoxy-α-d-heptopyranosylhalide)onic acid derivatives. Silver triflate promoted glycosylation of methanol was successful with each 2,3-trans-diaxial (3-bromo-3-deoxy-α-d-heptopyranosylbromide)onic acid derivative, however, several attempted nucleophilic substitution and elimination reactions gave the parent glycal only.


Assuntos
Desoxiaçúcares , Glicosilação
17.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920838

RESUMO

A current trend in the quest for new therapies for complex, multifactorial diseases, such as diabetes mellitus (DM), is to find dual or even multi-target inhibitors. In DM, the sodium dependent glucose cotransporter 2 (SGLT2) in the kidneys and the glycogen phosphorylase (GP) in the liver are validated targets. Several (ß-D-glucopyranosylaryl)methyl (het)arene type compounds, called gliflozins, are marketed drugs that target SGLT2. For GP, low nanomolar glucose analogue inhibitors exist. The purpose of this study was to identify dual acting compounds which inhibit both SGLTs and GP. To this end, we have extended the structure-activity relationships of SGLT2 and GP inhibitors to scarcely known (C-ß-D-glucopyranosylhetaryl)methyl arene type compounds and studied several (C-ß-D-glucopyranosylhetaryl)arene type GP inhibitors against SGLT. New compounds, such as 5-arylmethyl-3-(ß-D-glucopyranosyl)-1,2,4-oxadiazoles, 5-arylmethyl-2-(ß-D-glucopyranosyl)-1,3,4-oxadiazoles, 4-arylmethyl-2-(ß-D-glucopyranosyl)pyrimidines and 4(5)-benzyl-2-(ß-D-glucopyranosyl)imidazole were prepared by adapting our previous synthetic methods. None of the studied compounds exhibited cytotoxicity and all of them were assayed for their SGLT1 and 2 inhibitory potentials in a SGLT-overexpressing TSA201 cell system. GP inhibition was also determined by known methods. Several newly synthesized (C-ß-D-glucopyranosylhetaryl)methyl arene derivatives had low micromolar SGLT2 inhibitory activity; however, none of these compounds inhibited GP. On the other hand, several (C-ß-D-glucopyranosylhetaryl)arene type GP inhibitor compounds with low micromolar efficacy against SGLT2 were identified. The best dual inhibitor, 2-(ß-D-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole, had a Ki of 31 nM for GP and IC50 of 3.5 µM for SGLT2. This first example of an SGLT-GP dual inhibitor can prospectively be developed into even more efficient dual-target compounds with potential applications in future antidiabetic therapy.

18.
Org Biomol Chem ; 19(3): 605-618, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33355586

RESUMO

Coupling reactions of O-peracylated 2,6-anhydro-aldose tosylhydrazones (C-(ß-d-glycopyranosyl)formaldehyde tosylhydrazones) with tetrazoles were studied under metal-free conditions using thermic or microwave activation in the presence of different bases. The reactions proved highly regioselective and gave the corresponding, up-to-now unknown 2-ß-d-glycopyranosylmethyl-2H-tetrazoles in 7-67% yields. The method can be applied to get new types of disaccharide mimetics, 5-glycosyl-2-glycopyranosylmethyl-2H-tetrazoles, as well. Galectin binding studies with C-(ß-d-galactopyranosyl)formaldehyde tosylhydrazone and 2-(ß-d-galactopyranosylmethyl)-5-phenyl-2H-tetrazole revealed no significant inhibition of any of these lectins.

19.
PLoS One ; 15(9): e0236081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32960890

RESUMO

Type 2 diabetes mellitus (T2DM), one of the most common metabolic diseases, is characterized by insulin resistance and inadequate insulin secretion of ß cells. Glycogen phosphorylase (GP) is the key enzyme in glycogen breakdown, and contributes to hepatic glucose production during fasting or during insulin resistance. Pharmacological GP inhibitors are potential glucose lowering agents, which may be used in T2DM therapy. A natural product isolated from the cultured broth of the fungal strain No. 138354, called 2,3-bis(4-hydroxycinnamoyloxy)glutaric acid (FR258900), was discovered a decade ago. In vivo studies showed that FR258900 significantly reduced blood glucose levels in diabetic mice. We previously showed that GP inhibitors can potently enhance the function of ß cells. The purpose of this study was to assess whether an analogue of FR258900 can influence ß cell function. BF142 (Meso-Dimethyl 2,3-bis[(E)-3-(4-acetoxyphenyl)prop-2-enamido]butanedioate) treatment activated the glucose-stimulated insulin secretion pathway, as indicated by enhanced glycolysis, increased mitochondrial oxidation, significantly increased ATP production, and elevated calcium influx in MIN6 cells. Furthermore, BF142 induced mTORC1-specific phosphorylation of S6K, increased levels of PDX1 and insulin protein, and increased insulin secretion. Our data suggest that BF142 can influence ß cell function and can support the insulin producing ability of ß cells.


Assuntos
Cinamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Glutaratos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ácido Succínico/farmacologia , Animais , Linhagem Celular Tumoral , Cinamatos/química , Inibidores Enzimáticos/química , Glucose/metabolismo , Glutaratos/química , Glicogênio Fosforilase/metabolismo , Glicólise/efeitos dos fármacos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Metilação , Camundongos , Ácido Succínico/química
20.
Molecules ; 25(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041285

RESUMO

Despite the substantial interest in C-glycosyl heterocycles as mimetics of biologically active native glycans, the appearance of C-glycopyranosyl derivatives of six-membered heterocycles, both in synthetic and biological contexts, is rather scarce. As part of our ongoing research program aimed at preparing hitherto barely known 2-C-glycopyranosyl pyrimidines, the goal of the present study was to synthesize new 5-mono- and multiply substituted derivatives of this compound class. Thus, 2-C-(ß-D-glucopyranosyl)-5,6-disubstituted-pyrimidin-4(3H)-ones and 4-amino-2-C-(ß-D-glucopyranosyl)-5,6-disubstituted-pyrimidines were prepared by base-mediated cyclocondensations of O-perbenzylated and O-unprotected C-(ß-D-glucopyranosyl) formamidine hydrochlorides with methylenemalonic acid derivatives. The 2-C-(ß-D-glucopyranosyl)-5-substituted-pyrimidines were obtained from the same amidine precursors upon treatment with vinamidinium salts. The deprotected derivatives of these pyrimidines were tested as inhibitors of some glycoenzymes. None of them showed inhibitory activity towards glycogen phosphorylase and α- and ß-glucosidase enzymes, but some members of the sets exhibited moderate inhibition against bovine liver ß-galactosidase.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Pirimidinas/síntese química , Pirimidinas/farmacologia , Animais , Bovinos , alfa-Glucosidases/metabolismo , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...