Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 27(10): 1759-66, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25648503

RESUMO

High-rate nanoscale offset printing using a newly developed reusable template enables the assembly of nanomaterials into nanostructures followed by their transfer onto a flexible substrate in a few minutes. The developed template can potentially be reused more than 100 times in the offset printing process without any additional functionalization. This approach provides a new way for the printing of flexible devices with nanoscale patterns.

2.
J Nanosci Nanotechnol ; 14(5): 3673-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734611

RESUMO

Due to their superior electrical properties such as high current density and ballistic transport, carbon nanotubes (CNT) are considered as a potential candidate for future Very Large Scale Integration (VLSI) interconnects. However, direct incorporation of CNTs into Complimentary Metal Oxide Semiconductor (CMOS) architecture by conventional chemical vapor deposition (CVD) growth method is problematic since it requires high temperatures that might damage insulators and doped semiconductors in the underlying CMOS circuits. In this paper, we present a directed assembly method to assemble aligned CNTs into pre-patterned vias and perpendicular to the substrate. A dynamic electric field with a static offset is applied to provide the force needed for directing the SWNT assembly. It is also shown that by adjusting assembly parameters the density of the assembled CNTs can be significantly enhanced. This highly scalable directed assembly method is conducted at room temperature and pressure and is accomplished in a few minutes. I-V characterization of the assembled CNTs was conducted using a Zyvex nanomanipulator in a scanning electron microscope (SEM) and the measured value of the resistance is found to be 270 komega s.

3.
ACS Nano ; 8(5): 4547-58, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24738844

RESUMO

Directed assembly of nano building blocks offers a versatile route to the creation of complex nanostructures with unique properties. Bottom-up directed assembly of nanoparticles have been considered as one of the best approaches to fabricate such functional and novel nanostructures. However, there is a dearth of studies on making crystalline, solid, and homogeneous nanostructures. This requires a fundamental understanding of the forces driving the assembly of nanoparticles and precise control of these forces to enable the formation of desired nanostructures. Here, we demonstrate that colloidal nanoparticles can be assembled and simultaneously fused into 3-D solid nanostructures in a single step using externally applied electric field. By understanding the influence of various assembly parameters, we showed the fabrication of 3-D metallic materials with complex geometries such as nanopillars, nanoboxes, and nanorings with feature sizes as small as 25 nm in less than a minute. The fabricated gold nanopillars have a polycrystalline nature, have an electrical resistivity that is lower than or equivalent to electroplated gold, and support strong plasmonic resonances. We also demonstrate that the fabrication process is versatile, as fast as electroplating, and scalable to the millimeter scale. These results indicate that the presented approach will facilitate fabrication of novel 3-D nanomaterials (homogeneous or hybrid) in an aqueous solution at room temperature and pressure, while addressing many of the manufacturing challenges in semiconductor nanoelectronics and nanophotonics.

4.
Analyst ; 138(23): 7206-11, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24133678

RESUMO

Here we report the highly effective detection of hydrogen sulfide (H2S) gas by redox reactions based on single-walled carbon nanotubes (SWCNTs) functionalized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as a catalyst and we also discuss the important role of water vapor in the electrical conductivity of SWCNTs during the sensing of H2S molecules. To explore the H2S sensing mechanism, we investigate the adsorption properties of H2S on carbon nanotubes (CNTs) and the effects of the TEMPO functionalization using first-principles density functional theory (DFT) and we summarize current changes of devices resulting from the redox reactions in the presence of H2S. The semiconducting-SWCNT (s-SWCNT) device functionalized with TEMPO shows a very high sensitivity of 420% at 60% humidity, which is 17 times higher than a bare s-SWCNT device under dry conditions. Our results offer promising prospects for personal safety and real-time monitoring of H2S gases with the highest sensitivity and low power consumption and potentially at a low cost.

5.
Environ Sci Technol ; 47(15): 8471-8, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23713494

RESUMO

Carbon nanotubes (CNTs) demonstrate great promise in a variety of electronic applications due to their unique mechanical, thermal, and electrical properties. Although commercialization of CNT-enabled products is increasing, there remains a significant lack of information regarding the health effects and environmental impacts of CNTs as well as how the addition of CNTs may affect the environmental profile of products. Given these uncertainties, it is useful to consider the life cycle environmental impacts of a CNT-enabled product to discover and potentially prevent adverse effects through improved design. This study evaluates the potential application of CNT switches to current cellular phone flash memory. Life cycle assessment (LCA) methodology is used to track the environmental impacts of a developmental nonvolatile bistable electromechanical CNT switch through its fabrication, expected use, and end-of-life. Results are reported for environmental impact categories including airborne inorganics, land use, and fossil fuels, with the largest contributions from gold refining processes and electricity generation. First-order predictions made for the use and end-of-life (EOL) stages indicate that the CNT switch could provide potential improvements to reduce environmental burden during use, although CNT release could occur through existing EOL processes.


Assuntos
Nanotubos de Carbono , Semicondutores
6.
Lab Chip ; 12(22): 4748-54, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22983480

RESUMO

This paper describes a microscale in vivo sensor platform device for the simultaneous detection of multiple biomarkers. We designed the polymer-based biosensors incorporating multiple active isolated areas, as small as 70 µm × 70 µm, for antigen detection. The fabrication approach involved conventional micro- and nano-fabrication processes followed by site-specific electrophoretic directed assembly of antibody-functionalized nanoparticles. To ensure precise and large-scale manufacturing of these biosensors, we developed a semi-automated system for the attachment of the 250-µm biosensor to a 300-µm catheter probe. Our fabrication and post-processing procedures should enable large-scale production of such biosensor devices at lower manufacturing cost. The principle of detection with these biosensors involved a simple fluorescence-based enzyme-linked immunosorbent assay. These biosensors exhibit high selectivity (ability to selectively detect multiple biomarkers of different diseases), specificity (ability to target generic to specific disease biomarkers), rapid antigen uptake, and low detection limits (for carcinoembryonic antigen, 31.25 pg mL(-1); for nucleosomes, 62.5 pg mL(-1)), laying the foundation for potential early detection of various diseases.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletroforese/instrumentação , Dispositivos Lab-On-A-Chip , Nanopartículas/química , Animais , Anticorpos Monoclonais/imunologia , Antígenos/análise , Antígenos/sangue , Antígenos/imunologia , Biomarcadores/análise , Biomarcadores/sangue , Soluções Tampão , Feminino , Camundongos
7.
Nanotechnology ; 23(33): 335203, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22865612

RESUMO

We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

8.
Nanotechnology ; 22(45): 455202, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22019899

RESUMO

A simple, reliable, and large scale ambient environment doping method for carbon nanotubes is a highly desirable approach for modulating the performance of nanotube based electronics. One of the major challenges is doping carbon nanotubes to simultaneously offer a large shift in threshold voltage and an improved subthreshold swing. In this paper, we report on modulating the performance of carbon nanotube field-effect transistors (CNTFETs) by rationally selecting doping molecules. We demonstrated that Rose Bengal sodium salt (RB-Na) molecular doping can effectively shift the threshold voltage (ΔVth) of CNTFETs up to ∼6 V, decrease the subthreshold swing down to 130 mV/decade, and increase the effective field-effect mobility to 5 cm2 V(-1) s(-1). It is also shown that CNTFETs doped with Rose Bengal lactone (RBL) show a smaller variation in ΔVth (∼2 V) and subthreshold swing than those doped by RB-Na, which can be attributed to the difference in their molecular structures. The observed right-shift of the threshold voltage is attributed to the positive charge doping of the nanotube conduction channel from Rose Bengal molecules. The resultant lowering of the subthreshold swing is due to the reduced Schottky barrier at the CNT/metal/molecule interface. This room temperature chemical doping approach provides an efficient, simple, and cost-effective method to fabricate highly reliable and high-performance nanotube transistors for future nanotube based electronics.

9.
Langmuir ; 27(11): 7301-6, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21561142

RESUMO

The precise, size-selective assembly of nanoparticles gives rise to many applications where the assembly of nano building blocks with different biological or chemical functionalizations is necessary. We introduce a simple, fast, reproducible-directed assembly technique that enables a complete sorting of nanoparticles with single-particle resolution. Nanoparticles are size-selectively assembled into prefabricated via arrays using a sequential template-directed electrophoretic assembly method. Polystyrene latex (PSL) nanoparticles with diameters ranging from 200 to 50 nm are selectively assembled into vias comparable to nanoparticle diameter. We investigate the effects of particle size and via size on the sorting efficiency. We show that complete sorting can be achieved when the size of the vias is close to the diameter of the nanoparticles and the size distribution of the chosen nanoparticles does not overlap. The results also show that it is necessary to keep the electric field on during the insertion and removal of the template. To elucidate the versatility and nil effects that the electrophoresis assembly technique has on the assembled nanoparticle characteristics, we have assembled cancer-specific monoclonal antibody-2C5-coated nanoparticles and have also shown that they can successfully measure low concentrations of the nucleosome (NS) antigen.


Assuntos
Técnicas Biossensoriais/métodos , Eletroforese , Nanopartículas/química , Tamanho da Partícula , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/imunologia , Eletricidade
10.
ACS Nano ; 4(7): 4142-8, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20695518

RESUMO

Efforts aimed at large-scale integration of nanoelectronic devices that exploit the superior electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs) remain limited by the difficulties associated with manipulation and packaging of individual SWNTs. Alternative approaches based on ultrathin carbon nanotube networks (CNNs) have enjoyed success of late with the realization of several scalable device applications. However, precise control over the network electronic transport is challenging due to (i) an often uncontrollable interplay between network coverage and its detailed topology and (ii) the inherent electrical heterogeneity of the constituent SWNTs. In this article, we use template-assisted fluidic assembly of SWCNT networks to explore the effect of geometric confinement on the network topology. Heterogeneous SWCNT networks dip-coated onto submicrometer wide ultrathin polymer channels become increasingly aligned with decreasing channel width and thickness. Experimental-scale coarse-grained computations of interacting SWCNTs show that the effect is a reflection of a topology that is no longer dependent on the network density, which in turn emerges as a robust knob that can induce semiconductor-to-metallic transitions in the network response. Our study demonstrates the effectiveness of directed assembly on channels with varying degrees of confinement as a simple tool to tailor the conductance of the otherwise heterogeneous network, opening up the possibility of robust large-scale CNN-based devices.

11.
J Am Chem Soc ; 131(2): 804-8, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19093841

RESUMO

Very large scale patterned single-walled carbon nanotube (SWNT) networks were fabricated using a newly developed template guided fluidic assembly process. A mechanism for SWNT assembly and their control is described here. To maximize the directed assembly efficiency of SWNTs toward a wafer level SWNT deposition, Si or SiO(2) substrate was pretreated with precisely controlled SF(6), O(2), and Ar plasma. Chemical and physical properties of the surface were characterized using several surface characterization techniques to investigate and control the mechanism of SWNT assembly. We found that hydrophilic chemical groups such as hydroxides were created on the silicon or silicon oxide surface through the controlled plasma treatment and fluidic SWNT dip-coating process. Also we found that nanoscale rough surface structures formed during the plasma treatment significantly increased the number of dangling bonds and hydroxide functional groups on the surface. These combined chemical and physical enhancements that attract SWNTs in the aqueous solution enable us to build highly organized and very large scale SWNT network architectures effectively in various dimensions and geometries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...