Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Data Brief ; 52: 109948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186738

RESUMO

Adrenal corticosteroid biosynthesis dysregulation can give rise to various pathological conditions, such as Cushing's syndrome, a disorder characterized by the sustained and excessive production of cortisol. Despite the development of several classes of steroidogenesis inhibitors to treat human diseases associated with cortisol overproduction, their use is limited by insufficient efficacy, adverse effects, and/or tolerability. Recently, we identified a series of benzimidazolylurea derivatives, including the representative compound CJ28, as novel cortisol biosynthesis inhibitors [1]. They significantly inhibited both basal and stimulated production of cortisol in NCI-H295R cells, a human adrenocarcinoma cell line. The inhibitory effects were attributed to both attenuated steroidogenesis and de novo cholesterol biosynthesis. Here, we provide transcriptomic (RNA-seq) data from adrenal cell cultures in response to treatment with either CJ28 or metyrapone (MET), an inhibitor of 11ß-hydroxylase). Total RNA was extracted from the cells treated with vehicle (0.1% DMSO), CJ28 (30 µM), or MET (30 µM) for 24 h. Primary sequence data were acquired using paired-end sequencing on an Illumina NovaSeq 6000 platform. The raw RNA-seq data have been deposited in the Gene Expression Omnibus (GEO) database (GSE236435). This dataset is a useful resource for providing valuable information on the gene expression networks underlying adrenocortical steroidogenesis.

2.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255844

RESUMO

REV-ERBα and its paralog, REV-ERBß, encoded by NR1D1 and NR1D2 genes, are key nuclear receptors that link the circadian timing system and metabolic homeostasis. Since heme is an endogenous ligand, REV-ERBs have been considered key components of the circadian molecular clock and can be pharmacologically targeted to treat various circadian rhythm-related diseases, such as cardiometabolic, inflammatory, and neuropsychiatric diseases, as well as cancer. REV-ERBs are believed to be functionally redundant and compensatory, although they often affect the expression of gene subsets in an isoform-specific manner. Therefore, this study aimed to identify the redundant and distinct roles of each isoform in controlling its target genes by comparing the transcriptome profiles of a panel of mutant U2OS human osteosarcoma cells in which either NR1D1 or NR1D2 was ablated. Indeed, our transcriptomic analyses revealed that most REV-ERB-regulated genes are controlled by redundant or even additive actions. However, the RNA expression profiles of each single mutant cell line also provide strong evidence for isoform-dependent actions. For example, REV-ERBα is more responsible for regulating the NF-κΒ signaling pathway, whereas a group of extracellular matrix components requires REV-ERBß to maintain their expression. We found that REV-ERBs have isoform-selective functions in the regulation of certain circadian output pathways despite their overlapping roles in the circadian molecular clock. Thus, the development of isoform-selective REV-ERB modulators can help treat metabolic disturbances and certain types of cancer.


Assuntos
Neoplasias Ósseas , Transtornos Cronobiológicos , Osteossarcoma , Humanos , Técnicas de Cultura de Células , Osteossarcoma/genética , Isoformas de Proteínas , Receptores Citoplasmáticos e Nucleares
3.
Life Sci ; 325: 121744, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37127185

RESUMO

AIMS: Dysregulation of adrenocortical steroid (corticosteroids) biosynthesis leads to pathological conditions such as Cushing's syndrome. Although several classes of steroid biosynthesis inhibitors have been developed to treat cortisol overproduction, limitations such as insufficient efficacy, adverse effects, and/or tolerability still remain. The present study aimed to develop a new class of small molecules that inhibit cortisol production, and investigated their putative modes of action. MAIN METHODS: We screened an in-house chemical library with drug-like chemical scaffolds using human adrenocortical NCI-H295R cells. We then evaluated and validated the effects of the selected compounds at multiple regulatory steps of the adrenal steroidogenic pathway. Finally, genome-wide RNA expression analysis coupled with gene enrichment analysis was conducted to infer possible action mechanisms. KEY FINDINGS: A subset of benzimidazolylurea derivatives, including a representative compound (designated as CJ28), inhibited both basal and stimulated production of cortisol and related intermediate steroids. CJ28 attenuated the mRNA expression of multiple genes involved in steroidogenesis and cholesterol biosynthesis. Furthermore, CJ28 significantly attenuated de novo cholesterol biosynthesis, which contributed to its suppression of cortisol production. SIGNIFICANCE: We identified a novel chemical scaffold that exerts inhibitory effects on cortisol and cholesterol biosynthesis via coordinated transcriptional silencing of gene expression networks. Our findings also reveal an additional adrenal-directed pharmacological strategy for hypercortisolism involving a combination of inhibitors targeting steroidogenesis and de novo cholesterol biosynthesis.


Assuntos
Síndrome de Cushing , Humanos , Síndrome de Cushing/tratamento farmacológico , Hidrocortisona/metabolismo , Esteroides , Corticosteroides , Colesterol/metabolismo
4.
Nat Commun ; 14(1): 1994, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031230

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor of critical enzymes including protein deacetylase sirtuins/SIRTs and its levels in mammalian cells rely on the nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway. Intracellular NAMPT (iNAMPT) is secreted and found in the blood as extracellular NAMPT (eNAMPT). In the liver, the iNAMPT-NAD+ axis oscillates in a circadian manner and regulates the cellular clockwork. Here we show that the hypothalamic NAD+ levels show a distinct circadian fluctuation with a nocturnal rise in lean mice. This rhythm is in phase with that of plasma eNAMPT levels but not with that of hypothalamic iNAMPT levels. Chemical and genetic blockade of eNAMPT profoundly inhibit the nighttime elevations in hypothalamic NAD+ levels as well as those in locomotor activity (LMA) and energy expenditure (EE). Conversely, elevation of plasma eNAMPT by NAMPT administration increases hypothalamic NAD+ levels and stimulates LMA and EE via the hypothalamic NAD+-SIRT-FOXO1-melanocortin pathway. Notably, obese animals display a markedly blunted circadian oscillation in blood eNAMPT-hypothalamic NAD+-FOXO1 axis as well as LMA and EE. Our findings indicate that the eNAMPT regulation of hypothalamic NAD+ biosynthesis underlies circadian physiology and that this system can be significantly disrupted by obesity.


Assuntos
Citocinas , NAD , Camundongos , Animais , NAD/metabolismo , Citocinas/metabolismo , Fígado/metabolismo , Metabolismo Energético , Ritmo Circadiano , Locomoção , Mamíferos/metabolismo
5.
Lab Invest ; 103(1): 100008, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748191

RESUMO

Most physiological functions exhibit circadian rhythmicity that is partly regulated by the molecular circadian clock. Herein, we investigated the relationship between the circadian clock and chronic kidney disease (CKD). The role of the clock gene in adenine-induced CKD and the mechanisms of interaction were investigated in mice in which Bmal1, the master regulator of the clock gene, was knocked out, and Bmal1 knockout (KO) tubule cells. We also determined whether the renoprotective effect of time-restricted feeding (TRF), a dietary strategy to enhance circadian rhythm, is clock gene-dependent. The mice with CKD showed altered expression of the core clock genes with a loss of diurnal variations in renal functions and key tubular transporter gene expression. Bmal1 KO mice developed more severe fibrosis, and transcriptome profiling followed by gene ontology analysis suggested that genes associated with the cell cycle, inflammation, and fatty acid oxidation pathways were significantly affected in the mutant mice. Tubule-specific deletion of BMAL1 in HK-2 cells by CRISPR/Cas9 led to upregulation of p21 and tumor necrosis α and exacerbated epithelial-mesenchymal transition-related gene expression upon transforming growth factor ß stimulation. Finally, TRF in the mice with CKD partially restored the disrupted oscillation of the kidney clock genes, accompanied by improved cell cycle arrest and inflammation, leading to decreased fibrosis. However, the renoprotective effect of TRF was abolished in Bmal1 KO mice, suggesting that TRF is partially dependent on the clock gene. Our data demonstrate that the molecular clock system plays an important role in CKD via cell cycle regulation and inflammation. Understanding the role of the circadian clock in kidney diseases can be a new research field for developing novel therapeutic targets.


Assuntos
Relógios Circadianos , Jejum Intermitente , Insuficiência Renal Crônica , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/genética , Fibrose , Inflamação , Camundongos Knockout , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética
6.
Mol Brain ; 15(1): 48, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614468

RESUMO

The habenula (Hb) is an epithalamic structure that links multiple forebrain areas with the mid/hindbrain monoaminergic systems. As an anti-reward center, it has been implicated in the etiology of various neuropsychiatric disorders, particularly those associated with dysregulated reward circuitry. In this regard, Hb has been proposed as a therapeutic target for treatment-resistant depression associated with a higher risk of suicide. Therefore, we aimed to gain insight into the molecular signatures of the Hb in association with suicide in individuals with major depression. Postmortem gene expression analysis identified 251 differentially expressed genes (DEGs) in the Hb tissue of suicides in comparison with Hb tissues from neurotypical individuals. Subsequent bioinformatic analyses using single-cell transcriptome data from the mouse Hb showed that the levels of a subset of endothelial cell-enriched genes encoding cell-cell junctional complex and plasma membrane-associated proteins, as well as the levels of their putative upstream transcriptional regulators, were significantly affected in suicides. Although our findings are based on a limited number of samples, the present study suggests a potential association of endothelial dysfunction in the Hb with depression and suicidal behavior.


Assuntos
Transtorno Depressivo Maior , Habenula , Suicídio , Animais , Autopsia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Humanos , Camundongos , Transcriptoma/genética
7.
Mol Cells ; 45(5): 306-316, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35534192

RESUMO

Chronic stress contributes to the risk of developing depression; the habenula, a nucleus in epithalamus, is associated with many neuropsychiatric disorders. Using genome-wide gene expression analysis, we analyzed the transcriptome of the habenula in rats exposed to chronic restraint stress for 14 days. We identified 379 differentially expressed genes (DEGs) that were affected by chronic stress. These genes were enriched in neuroactive ligand-receptor interaction, the cAMP (cyclic adenosine monophosphate) signaling pathway, circadian entrainment, and synaptic signaling from the Kyoto Encyclopedia of Genes and Genomes pathway analysis and responded to corticosteroids, positive regulation of lipid transport, anterograde trans-synaptic signaling, and chemical synapse transmission from the Gene Ontology analysis. Based on protein-protein interaction network analysis of the DEGs, we identified neuroactive ligand-receptor interactions, circadian entrainment, and cholinergic synapse-related subclusters. Additionally, cell type and habenular regional expression of DEGs, evaluated using a recently published single-cell RNA sequencing study (GSE137478), strongly suggest that DEGs related to neuroactive ligand-receptor interaction and trans-synaptic signaling are highly enriched in medial habenular neurons. Taken together, our findings provide a valuable set of molecular targets that may play important roles in mediating the habenular response to stress and the onset of chronic stress-induced depressive behaviors.


Assuntos
Redes Reguladoras de Genes , Habenula , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Ontologia Genética , Ligantes , Ratos , Transcriptoma
8.
Pharmaceuticals (Basel) ; 14(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073760

RESUMO

Circadian dysfunction is closely associated with an increased risk of various diseases. Considering that molecular clock machinery serves as an intrinsic time-keeping system underlying the circadian rhythm of biological processes, the modulation of the molecular clock machinery is an attractive therapeutic target with novel mechanisms of action. Based on the previous structure-activity relationship study of small molecule cryptochrome (CRY) inhibitors possessing an ethoxypropanoic acid moiety, non-ethoxypropanoic acid-type inhibitors have been developed by bioisosteric replacement. They were evaluated as potent and effective enhancers of E-box-mediated transcription, and, in particular, ester 5d and its hydrolysis product 2d exhibited desirable metabolic and pharmacokinetic profiles as promising drug candidates. Compound 2d directly bound to both CRY1 and 2 in surface plasmon resonance analyses, suggesting that the molecular target is CRY. Effects of compound 5d and 2d on suppressive action of CRY1 on CLOCK:BMAL1-activated E-box-LUC reporter activity revealed that both compounds inhibited the negative feedback actions of CRY on CLOCK:BMAL1. Most importantly, compounds 5d and 2d exhibited significant effects on molecular circadian rhythmicity to be considered circadian clock-enhancers, distinct from the previously developed CRY inhibitors possessing an ethoxypropanoic acid moiety.

9.
Stem Cell Reports ; 15(4): 898-911, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32976767

RESUMO

Mammalian embryos exhibit a transition from head morphogenesis to trunk elongation to meet the demand of axial elongation. The caudal neural tube (NT) is formed with neural progenitors (NPCs) derived from neuromesodermal progenitors localized at the tail tip. However, the molecular and cellular basis of elongating NT morphogenesis is yet elusive. Here, we provide evidence that caudal NPCs exhibit strong adhesion affinity that is gradually decreased along the anteroposterior (AP) axis in mouse embryonic spinal cord and human cellular models. Strong cell-cell adhesion causes collective migration, allowing AP alignment of NPCs depending on their birthdate. We further validated that this axial adhesion gradient is associated with the extracellular matrix and is under the control of graded Wnt signaling emanating from tail buds and antagonistic retinoic acid (RA) signaling. These results suggest that progressive reduction of NPC adhesion along the AP axis is under the control of Wnt-RA molecular networks, which is essential for a proper elongation of the spinal cord.


Assuntos
Padronização Corporal , Movimento Celular , Células-Tronco Neurais/citologia , Medula Espinal/citologia , Medula Espinal/embriologia , Tretinoína/metabolismo , Proteínas Wnt/metabolismo , Animais , Padronização Corporal/genética , Adesão Celular/genética , Movimento Celular/genética , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Transgênicos , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Tubo Neural/citologia , Tubo Neural/embriologia , Transdução de Sinais/genética
10.
Mol Cells ; 43(4): 408-418, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235021

RESUMO

The sinus node (SN) is located at the apex of the cardiac conduction system, and SN dysfunction (SND)-characterized by electrical remodeling-is generally attributed to idiopathic fibrosis or ischemic injuries in the SN. SND is associated with increased risk of cardiovascular disorders, including syncope, heart failure, and atrial arrhythmias, particularly atrial fibrillation. One of the histological SND hallmarks is degenerative atrial remodeling that is associated with conduction abnormalities and increased right atrial refractoriness. Although SND is frequently accompanied by increased fibrosis in the right atrium (RA), its molecular basis still remains elusive. Therefore, we investigated whether SND can induce significant molecular changes that account for the structural remodeling of RA. Towards this, we employed a rabbit model of experimental SND, and then compared the genome-wide RNA expression profiles in RA between SND-induced rabbits and sham-operated controls to identify the differentially expressed transcripts. The accompanying gene enrichment analysis revealed extensive pro-fibrotic changes within 7 days after the SN ablation, including activation of transforming growth factor-ß (TGF-ß) signaling and alterations in the levels of extracellular matrix components and their regulators. Importantly, our findings suggest that periostin, a matricellular factor that regulates the development of cardiac tissue, might play a key role in mediating TGF-ß-signaling-induced aberrant atrial remodeling. In conclusion, the present study provides valuable information regarding the molecular signatures underlying SND-induced atrial remodeling, and indicates that periostin can be potentially used in the diagnosis of fibroproliferative cardiac dysfunctions.


Assuntos
Átrios do Coração/anormalidades , Sistema de Condução Cardíaco/fisiopatologia , Síndrome do Nó Sinusal/fisiopatologia , Nó Sinoatrial/anormalidades , Animais , Humanos , Coelhos
11.
Exp Mol Med ; 52(3): 473-484, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32161397

RESUMO

Maternal stress has long-lasting influences on the brain functions of offspring, and several brain regions have been proposed to mediate such programming. Although perinatal programming of crosstalk between the circadian and stress systems has been proposed, the functional consequences of prenatal stress on the circadian system and the underlying mechanisms remain largely unknown. Therefore, we investigated whether exposing pregnant mice to chronic restraint stress had prolonged effects on the suprachiasmatic nucleus (SCN), which bears the central pacemaker for mammalian circadian rhythms, of offspring. SCN explants from maternally stressed mice exhibited altered cyclic expression patterns of a luciferase reporter under control of the mouse Per1 promoter (mPer1::LUC), which manifested as a decreased amplitude and impaired stability of the rhythm. Bioluminescence imaging at the single-cell level subsequently revealed that impaired synchrony among individual cells was responsible for the impaired rhythmicity. These intrinsic defects appeared to persist during adulthood. Adult male offspring from stressed mothers showed advanced-phase behavioral rhythms with impaired stability as well as altered clock gene expression in the SCN. In addition to affecting the central rhythm, maternal stress also had prolonged influences on the circadian characteristics of the adrenal gland and liver, as determined by circulating corticosterone levels and hepatic glycogen content, and on canonical clock gene mRNA expression in those tissues. Taken together, our findings suggest that the SCN is a key target of the programming effects of maternal stress. The widespread effects of circadian disruptions caused by a misprogrammed clock may have further impacts on metabolic and mental health in later life.


Assuntos
Ritmo Circadiano/genética , Animais , Regulação da Expressão Gênica/genética , Fígado/fisiologia , Luciferases/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Circadianas Period/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Núcleo Supraquiasmático/fisiologia
12.
Neuroendocrinology ; 110(11-12): 1010-1027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31935735

RESUMO

INTRODUCTION: Synchronous and pulsatile neural activation of kisspeptin neurons in the arcuate nucleus (ARN) are important components of the gonadotropin-releasing hormone pulse generator, the final common pathway for central regulation of mammalian reproduction. However, whether ARN kisspeptin neurons can intrinsically generate self-sustained synchronous oscillations from the early neonatal period and how they are regulated remain unclear. OBJECTIVE: This study aimed to examine the endogenous rhythmicity of ARN kisspeptin neurons and its neural regulation using a neonatal organotypic slice culture model. METHODS: We monitored calcium (Ca2+) dynamics in real-time from individual ARN kisspeptin neurons in neonatal organotypic explant cultures of Kiss1-IRES-Cre mice transduced with genetically encoded Ca2+ indicators. Pharmacological approaches were employed to determine the regulations of kisspeptin neuron-specific Ca2+ oscillations. A chemogenetic approach was utilized to assess the contribution of ARN kisspeptin neurons to the population dynamics. RESULTS: ARN kisspeptin neurons in neonatal organotypic cultures exhibited a robust synchronized Ca2+ oscillation with a period of approximately 3 min. Kisspeptin neuron-specific Ca2+ oscillations were dependent on voltage-gated sodium channels and regulated by endoplasmic reticulum-dependent Ca2+ homeostasis. Chemogenetic inhibition of kisspeptin neurons abolished synchronous Ca2+ oscillations, but the autocrine actions of the neuropeptides were marginally effective. Finally, neonatal ARN kisspeptin neurons were regulated by N-methyl-D-aspartate and gamma-aminobutyric acid receptor-mediated neurotransmission. CONCLUSION: These data demonstrate that ARN kisspeptin neurons in organotypic cultures can generate synchronized and self-sustained Ca2+ oscillations. These oscillations controlled by multiple regulators within the ARN are a novel ultradian rhythm generator that is active during the early neonatal period.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Sinalização do Cálcio/fisiologia , Kisspeptinas , Neurônios/fisiologia , Ritmo Ultradiano/fisiologia , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Transgênicos
13.
Front Neurosci ; 13: 391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057364

RESUMO

Despite the established comorbidity between mood disorders and abnormal eating behaviors, the underlying molecular mechanism and therapeutics remain to be resolved. Here, we show that a spexin-based galanin receptor type 2 agonist (SG2A) simultaneously normalized mood behaviors and body weight in corticosterone pellet-implanted (CORTI) mice, which are underweight and exhibit signs of anhedonia, increased anxiety, and depression. Administration of SG2A into the lateral ventricle produced antidepressive and anxiolytic effects in CORTI mice. Additionally, SG2A led to a recovery of body weight in CORTI mice while it induced significant weight loss in normal mice. In Pavlovian fear-conditioned mice, SG2A decreased contextual and auditory fear memory consolidation but accelerated the extinction of acquired fear memory without altering innate fear and recognition memory. The main action sites of SG2A in the brain may include serotonergic neurons in the dorsal raphe nucleus for mood control, and proopiomelanocortin/corticotropin-releasing hormone neurons in the hypothalamus for appetite and body weight control. Furthermore, intranasal administration of SG2A exerted the same anxiolytic and antidepressant-like effects and decreased food intake and body weight in a dose-dependent manner. Altogether, these results indicate that SG2A holds promise as a clinical treatment for patients with comorbid mood disorders and abnormal appetite/body weight.

14.
Exp Neurobiol ; 28(1): 17-29, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30853821

RESUMO

5-HT6 receptor (5-HT6R) is implicated in cognitive dysfunction, mood disorder, psychosis, and eating disorders. However, despite its significant role in regulating the brain functions, regulation of 5-HT6R at the molecular level is poorly understood. Here, using yeast two-hybrid assay, we found that human 5-HT6R directly binds to neuro-oncological ventral antigen 1 (Nova-1), a brain-enriched splicing regulator. The interaction between 5-HT6R and Nova-1 was confirmed using GST pull-down and co-immunoprecipitation assays in cell lines and rat brain. The splicing activity of Nova-1 was decreased upon overexpression of 5-HT6R, which was examined by detecting the spliced intermediates of gonadotropin-releasing hormone (GnRH), a known pre-mRNA target of Nova-1, using RT-PCR. In addition, overexpression of 5-HT6R induced the translocation of Nova-1 from the nucleus to cytoplasm, resulting in the reduced splicing activity of Nova-1. In contrast, overexpression of Nova-1 reduced the activity and the total protein levels of 5-HT6R. Taken together, these results indicate that when the expression levels of 5-HT6R or Nova-1 protein are not properly regulated, it may also deteriorate the function of the other.

15.
ACS Biomater Sci Eng ; 5(7): 3462-3474, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-33405730

RESUMO

Decellularization of tissues provides extracellular matrix (ECM) scaffolds for regeneration therapy and an experimental model to understand ECM and cellular interactions. However, decellularization often causes microstructure disintegration and reduction of physical strength, which greatly limits the use of this technique in soft organs or in applications that require maintenance of physical strength. Here, we present a new tissue decellularization procedure, namely CASPER (Clinically and Experimentally Applicable Acellular Tissue Scaffold Production for Tissue Engineering and Regenerative Medicine), which includes infusion and hydrogel polymerization steps prior to robust chemical decellularization treatments. Polymerized hydrogels serve to prevent excessive damage to the ECM while maintaining the sophisticated structures and biological activities of ECM components in various organs, including soft tissues such as brains and embryos. CASPERized tissues were successfully recellularized to stimulate a tissue-regeneration-like process after implantation without signs of pathological inflammation or fibrosis in vivo, suggesting that CASPERized tissues can be used for monitoring cell-ECM interactions and for surrogate organ transplantation.

16.
Cell Rep ; 25(13): 3631-3646.e3, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30590038

RESUMO

A major mechanism contributing to synaptic plasticity involves alterations in the number of AMPA receptors (AMPARs) expressed at synapses. Hippocampal CA1 synapses, where this process has been most extensively studied, are highly heterogeneous with respect to their probability of neurotransmitter release, P(r). It is unknown whether there is any relationship between the extent of plasticity-related AMPAR trafficking and the initial P(r) of a synapse. To address this question, we induced metabotropic glutamate receptor (mGluR) dependent long-term depression (mGluR-LTD) and assessed AMPAR trafficking and P(r) at individual synapses, using SEP-GluA2 and FM4-64, respectively. We found that either pharmacological or synaptic activation of mGluR1 reduced synaptic SEP-GluA2 in a manner that depends upon P(r); this process involved an activity-dependent reduction in surface mGluR1 that selectively protects high-P(r) synapses from synaptic weakening. Consequently, the extent of postsynaptic plasticity can be pre-tuned by presynaptic activity.


Assuntos
Membrana Celular/metabolismo , Neurotransmissores/metabolismo , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Endocitose/efeitos dos fármacos , Glutamatos/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Probabilidade , Transporte Proteico/efeitos dos fármacos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ritmo Teta/efeitos dos fármacos
17.
Sci Data ; 5: 180220, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398471

RESUMO

Sarcophaga peregrina (flesh fly) is a frequently found fly species in Palaearctic, Oriental, and Australasian regions that can be used to estimate minimal postmortem intervals important for forensic investigations. Despite its forensic importance, the genome information of S. peregrina has not been fully described. Therefore, we generated a comprehensive gene expression dataset using RNA sequencing and carried out de novo assembly to characterize the S. peregrina transcriptome. We obtained precise sequence information for RNA transcripts using two different methods. Based on primary sequence information, we identified sets of assembled unigenes and predicted coding sequences. Functional annotation of the aligned unigenes was performed using the UniProt, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases. As a result, 26,580,352 and 83,221 raw reads were obtained using the Illumina MiSeq and Pacbio RS II Iso-Seq sequencing applications, respectively. From these reads, 55,730 contigs were successfully annotated. The present study provides the resulting genome information of S. peregrina, which is valuable for forensic applications.


Assuntos
Sarcofagídeos/genética , Transcriptoma , Animais , Genética Forense , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de RNA
18.
Metabolism ; 88: 51-60, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30179604

RESUMO

BACKGROUND: Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase SIRT1 is an important regulator of hypothalamic neuronal function. Thus, an adequate hypothalamic NAD content is critical for maintaining normal energy homeostasis. METHODS: We investigated whether NAD supplementation increases hypothalamic NAD levels and affects energy metabolism in mice. Furthermore, we investigated the mechanisms underlying the effects of exogenous NAD on central metabolism upon entering the hypothalamus. RESULTS: Central and peripheral NAD administration suppressed fasting-induced hyperphagia and weight gain in mice. Extracellular NAD was imported into N1 hypothalamic neuronal cells in a connexin 43-dependent and CD73-independent manner. Consistent with the in vitro data, inhibition of hypothalamic connexin 43 blocked hypothalamic NAD uptake and NAD-induced anorexia. Exogenous NAD suppressed NPY and AgRP transcriptional activity, which was mediated by SIRT1 and FOXO1. CONCLUSIONS: Exogenous NAD is effectively transported to the hypothalamus via a connexin 43-dependent mechanism and increases hypothalamic NAD content. Therefore, NAD supplementation is a potential therapeutic method for metabolic disorders characterized by hypothalamic NAD depletion.


Assuntos
Conexina 43/metabolismo , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , NAD/farmacologia , Proteína Relacionada com Agouti/genética , Animais , Transporte Biológico , Hiperfagia/prevenção & controle , Hipotálamo/citologia , Hipotálamo/metabolismo , Injeções Intraperitoneais , Injeções Intraventriculares , Masculino , Camundongos Endogâmicos C57BL , NAD/administração & dosagem , Neurônios/metabolismo , Neuropeptídeo Y/genética , Sirtuína 1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
19.
Mol Cells ; 41(8): 742-752, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30078232

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of dopaminergic (DAergic) neurons, particularly in the substantia nigra (SN). Although circadian dysfunction has been suggested as one of the pathophysiological risk factors for PD, the exact molecular link between the circadian clock and PD remains largely unclear. We have recently demonstrated that REV-ERBα, a circadian nuclear receptor, serves as a key molecular link between the circadian and DAergic systems. It competitively cooperates with NURR1, another nuclear receptor required for the optimal development and function of DA neurons, to control DAergic gene transcription. Considering our previous findings, we hypothesize that REV-ERBα may have a role in the onset and/or progression of PD. In the present study, we therefore aimed to elucidate whether genetic abrogation of REV-ERBα affects PD-related phenotypes in a mouse model of PD produced by a unilateral injection of 6-hydroxydopamine (6-OHDA) into the dorsal striatum. REV-ERBα deficiency significantly exacerbated 6-OHDA-induced motor deficits as well as DAergic neuronal loss in the vertebral midbrain including the SN and the ventral tegmental area. The exacerbated DAergic degeneration likely involves neuroinflammation-mediated neurotoxicity. The Rev-erbα knockout mice showed prolonged microglial activation in the SN along with the overproduction of interleukin 1ß, a pro-inflammatory cytokine, in response to 6-OHDA. In conclusion, the present study demonstrates for the first time that genetic abrogation of REV-ERBα can increase vulnerability of DAergic neurons to neurotoxic insults, such as 6-OHDA, thereby implying that its normal function may be beneficial for maintaining DAergic neuron populations during PD progression.


Assuntos
Relógios Circadianos/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Animais , Neurônios Dopaminérgicos/patologia , Camundongos , Doenças Neurodegenerativas/patologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Doença de Parkinson/patologia
20.
J Endocr Soc ; 2(5): 444-459, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29713692

RESUMO

Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic-pituitary-adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...