Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161751

RESUMO

This paper presents a method to classify flow regime and vapor quality in vertical two-phase (vapor-liquid) flow, using a video of the flow as the input; this represents the first high-performing and entirely camera image-based method for the classification of a vertical flow regime (which is effective across a wide range of regimes) and the first image-based tool for estimating vapor quality. The approach makes use of computer vision techniques and deep learning to train a convolutional neural network (CNN), which is used for individual frame classification and image feature extraction, and a deep long short-term memory (LSTM) network, used to capture temporal information present in a sequence of image feature sets and to make a final vapor quality or flow regime classification. This novel architecture for two-phase flow studies achieves accurate flow regime and vapor quality classifications in a practical application to two-phase CO2 flow in vertical tubes, based on offline data and an online prototype implementation, developed as a proof of concept for the use of these models within a feedback control loop. The use of automatically selected image features, produced by a CNN architecture in three distinct tasks comprising flow-image classification, flow-regime classification, and vapor quality prediction, confirms that these features are robust and useful, and offer a viable alternative to manually extracting image features for image-based flow studies. The successful application of the LSTM network reveals the significance of temporal information for image-based studies of two-phase flow.

2.
Healthcare (Basel) ; 9(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34574881

RESUMO

This paper presents the application of machine learning for classifying time-critical conditions namely sepsis, myocardial infarction and cardiac arrest, based off transcriptions of emergency calls from emergency services dispatch centers in South Africa. In this study we present results from the application of four multi-class classification algorithms: Support Vector Machine (SVM), Logistic Regression, Random Forest and K-Nearest Neighbor (kNN). The application of machine learning for classifying time-critical diseases may allow for earlier identification, adequate telephonic triage, and quicker response times of the appropriate cadre of emergency care personnel. The data set consisted of an original data set of 93 examples which was further expanded through the use of data augmentation. Two feature extraction techniques were investigated namely; TF-IDF and handcrafted features. The results were further improved using hyper-parameter tuning and feature selection. In our work, within the limitations of a limited data set, classification results yielded an accuracy of up to 100% when training with 10-fold cross validation, and 95% accuracy when predicted on unseen data. The results are encouraging and show that automated diagnosis based on emergency dispatch centre transcriptions is feasible. When implemented in real time, this can have multiple utilities, e.g. enabling the call-takers to take the right action with the right priority.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...