Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(1): 241-257, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824096

RESUMO

TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling. Instead, TCP13 mimics shade by activating the expression of a subset of shade-inducible and cell elongation-promoting SAUR genes including SAUR19, by direct targeting of their promoters. We also found that TCP13 and PIF4, a molecular proxy for shade, repress the expression of flavonoid biosynthetic genes by directly targeting both shared and distinct sets of biosynthetic gene promoters. Together, our results indicate that TCP13 promotes the SAS-like response by directly targeting a subset of shade-responsive genes without activating the PIF-auxin signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Fitocromo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Front Plant Sci ; 14: 1158288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152153

RESUMO

The shade avoidance syndrome (SAS) is a collective adaptive response of plants under shade highlighted by characteristic phenotypes such as hypocotyl elongation, which is largely mediated by concerted actions of auxin and GA. We identified ATHB2, a homeodomain-leucine zipper (HD-Zip) domain transcription factor known to be rapidly induced under shade condition, as a positive regulator of GA biosynthesis necessary for the SAS by transactivating the expression of GA20ox2, a key gene in the GA biosynthesis pathway. Based on promoter deletion analysis, EMSA and ChIP assay, ATHB2 appears to regulate the GA20ox2 expression as a direct binding target. We also found that the GA20ox2 expression is under negative control by TCP13, the effect of which can be suppressed by presence of ATHB2. Considering a rapid induction kinetics of ATHB2, this relationship between ATHB2 and TCP13 may allow ATHB2 to play a shade-specific activator for GA20ox by derepressing a pre-existing activity of TCP13.

3.
Genes (Basel) ; 10(9)2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31455029

RESUMO

Leaves grow by distinct phases controlled by gene regulatory networks including many transcription factors. Arabidopsis thaliana homeobox 12 (ATHB12) promotes leaf growth especially during the cell expansion phase. In this study, we identify TCP13, a member of the TCP transcription factor family, as an upstream inhibitor of ATHB12. Yeast one-hybrid screening using a 1.2-kb upstream region of ATHB12 resulted in the isolation of TCP13 as well as other transcription factors. Transgenic plants constitutively expressing TCP13 displays a significant reduction in leaf cell size especially during the cell expansion period, while repression of TCP13 and its paralogs (TCP5 and TCP17) result in enlarged leaf cells, indicating that TCP13 and its paralogs inhibit leaf development, mainly at the cell expansion phase. Its expression pattern during leaf expansion phase is opposite to ATHB12 expression. Consistently, the expression of ATHB12 and its downstream genes decreases when TCP13 was overexpressed, and increases when the expression of TCP13 and its paralogs is repressed. In chromatin immunoprecipitation assays using TCP13-GFP plants, a fragment of the ATHB12 upstream region that contains the consensus sequence for TCP binding is strongly enriched. Taken together, these findings indicate that TCP13 and its paralogs inhibit leaf growth by repressing ATHB12 expression.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Folhas de Planta/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
4.
Mol Med Rep ; 18(2): 2216-2228, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29916538

RESUMO

Oxidative stress is known to be a primary risk factor for neuronal diseases. Glutaredoxin (GLRX)­1, a redox­regulator of the thioredoxin superfamily, is known to exhibit an important role in cell survival via various cellular functions. However, the precise roles of GLRX1 in brain ischemia are still not fully understood. The present study investigated whether transduced PEP­1­GLRX1 protein has protective effects against oxidative stress in cells and in an animal model. Transduced PEP­1­GLRX1 protein increased HT­22 cell viability under oxidative stress and this fusion protein significantly reduced intracellular reactive oxygen species and levels of DNA damage. In addition, PEP­1­GLRX1 protein regulated RAC­a serine/threonine­protein kinase and mitogen­activated protein kinase signaling, in addition to apoptotic signaling including B cell lymphoma (Bcl)­2, Bcl­2 associated X, apoptosis regulator, pro­caspase­9 and p53 expression levels. In an ischemic animal model, it was verified that PEP­1­GLRX1 transduced into the Cornu Ammonis 1 region of the animal brain, where it markedly protected against ischemic injury. These results indicate that PEP­1­GLRX1 attenuates neuronal cell death resulting from oxidative stress in vitro and in vivo. Therefore, PEP­1­GLRX1 may exhibit a beneficial role in the treatment of neuronal disorders, including ischemic injury.


Assuntos
Cisteamina/análogos & derivados , Glutarredoxinas/farmacologia , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular , Cisteamina/farmacologia , Hipocampo/patologia , Camundongos , Neurônios/patologia
5.
Biochem Biophys Res Commun ; 501(3): 643-647, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29738770

RESUMO

In our previous studies, we have demonstrated that a stretch of amino-acid sequences identified from Arabidopsis ribosomal S6 kinase 1 (AtS6K1) provided a plant version of the TOS (TOR-signaling) motif, mediating the interaction with the Raptor protein in the TOR (Target of Rapamycin) kinase complex. Here we report the presence of same element in Arabidopsis Autophagy related-13 (AtATG13) protein, which is a key component of the plant autophagy response. Its composition is nearly identical to that found in the AtS6K1 in the five-amino-acid core sequence, and the presence of this five-amino-acid sequence was found to be essential for its interaction with the Raptor protein. A mutant AtATG13 protein lacking this five-amino-acid element conferred an elevated autophagy response and could not effectively phosphorylated by TOR kinase activity, demonstrating its role in mediating the TOR signaling to the components that carry it as a possible TOS motif. A ligand-binding simulation model using the MM-PBSA method indicates that both of the five-amino-acid sequence elements of AtS6K1 and AtATG13 have strong probability of making stable interface with the Raptor binding pocket, corroborating our proposition for this element as the plant TOS motif.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Autofagia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/citologia , Proteínas de Arabidopsis/química , Modelos Moleculares , Fosforilação , Mapas de Interação de Proteínas , Proteínas Quinases/química , Proteína Regulatória Associada a mTOR/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/metabolismo
6.
BMB Rep ; 50(9): 460-465, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28760196

RESUMO

Polycystic kidney disease (PKD) is one of the most common inherited disorders, involving progressive cyst formation in the kidney that leads to renal failure. FK506 binding protein 12 (FK506BP) is an immunophilin protein that performs multiple functions, including regulation of cell signaling pathways and survival. In this study, we determined the roles of PEP-1-FK506BP on cell proliferation and cyst formation in PKD cells. Purified PEP-1-FK506BP transduced into PKD cells markedly inhibited cell proliferation. Also, PEP-1-FK506BP drastically inhibited the expression levels of p-Akt, p-p70S6K, p-mTOR, and p-ERK in PKD cells. In a 3D-culture system, PEP-1-FK506BP significantly reduced cyst formation. Furthermore, the combined effects of rapamycin and PEP-1-FK506BP on cyst formation were markedly higher than the effects of individual treatments. These results suggest that PEP-1-FK506BP delayed cyst formation and could be a new therapeutic strategy for renal cyst formation in PKD. [BMB Reports 2017; 50(9): 460-465].


Assuntos
Doenças Renais Policísticas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Western Blotting , Proliferação de Células/genética , Proliferação de Células/fisiologia , Cistos/genética , Cistos/metabolismo , Modelos Animais de Doenças , Humanos , Microscopia Confocal , Doenças Renais Policísticas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Proteína 1A de Ligação a Tacrolimo/genética
7.
Biochem Biophys Res Commun ; 486(1): 137-142, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28285138

RESUMO

A putative raptor-binding fragment was identified from Arabidopsis S6 kinase 1 (AtS6K1) N-terminal domain in our previous study. Here, we report a further characterization of this fragment, which identified a 12-amino acid core element absolutely required for the interaction. Although the amino acid sequence of the element per se had no significant homology with the canonical consensus of the TOS (TOR-signaling) motif found in the mammalian TOR (target of rapamycin) kinase substrates, its overall sequence composition is similar to that of the TOS motif in that the acidic and non-polar amino acids residues are arranged in alternating fashion and having one or two of the bulky hydrophobic amino acid (F) buried in the interior. Substitution of this bulky residue completely abolished the binding of the fragment to AtRaptor1, as in the case of the mammalian TOS motif. Taken together with its position relative to the catalytic domain of the kinase, which also shows a resemblance with the TOS motif, these results appear to suggest that this core binding element in the N-terminus of AtS6K1 represents a plant version of the TOS motif.


Assuntos
Motivos de Aminoácidos/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Quinases S6 Ribossômicas/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Regulação da Expressão Gênica de Plantas , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases S6 Ribossômicas/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido
8.
Mol Brain ; 10(1): 1, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28052764

RESUMO

Oxidative stress plays an important role in the progression of various neuronal diseases including ischemia. Heat shock protein 22 (HSP22) is known to protect cells against oxidative stress. However, the protective effects and mechanisms of HSP22 in hippocampal neuronal cells under oxidative stress remain unknown. In this study, we determined whether HSP22 protects against hydrogen peroxide (H2O2)-induced oxidative stress in HT-22 using Tat-HSP22 fusion protein. We found that Tat-HSP22 transduced into HT-22 cells and that H2O2-induced cell death, oxidative stress, and DNA damage were significantly reduced by Tat-HSP22. In addition, Tat-HSP22 markedly inhibited H2O2-induced mitochondrial membrane potential, cytochrome c release, cleaved caspase-3, and Bax expression levels, while Bcl-2 expression levels were increased in HT-22 cells. Further, we showed that Tat-HSP22 transduced into animal brain and inhibited cleaved-caspase-3 expression levels as well as significantly inhibited hippocampal neuronal cell death in the CA1 region of animals in the ischemic animal model. In the present study, we demonstrated that transduced Tat-HSP22 attenuates oxidative stress-induced hippocampal neuronal cell death through the mitochondrial signaling pathway and plays a crucial role in inhibiting neuronal cell death, suggesting that Tat-HSP22 protein may be used to prevent oxidative stress-related brain diseases including ischemia.


Assuntos
Produtos do Gene tat/farmacologia , Proteínas de Choque Térmico/farmacologia , Hipocampo/patologia , Mitocôndrias/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Gerbillinae , Peróxido de Hidrogênio/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Chaperonas Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Transdução Genética
9.
BMB Rep ; 49(7): 382-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27049109

RESUMO

Reactive oxygen species generated under oxidative stress are involved in neuronal diseases, including ischemia. Glutathione S-transferase pi (GSTpi) is a member of the GST family and is known to play important roles in cell survival. We investigated the effect of GSTpi against oxidative stress-induced hippocampal HT-22 cell death, and its effects in an animal model of ischemic injury, using a cell-permeable PEP-1-GSTpi protein. PEP-1-GSTpi was transduced into HT-22 cells and significantly protected against H2O2-treated cell death by reducing the intracellular toxicity and regulating the signal pathways, including MAPK, Akt, Bax, and Bcl-2. PEP-1-GSTpi transduced into the hippocampus in animal brains, and markedly protected against neuronal cell death in an ischemic injury animal model. These results indicate that PEP-1-GSTpi acts as a regulator or an antioxidant to protect against oxidative stressinduced cell death. Our study suggests that PEP-1-GSTpi may have potential as a therapeutic agent for the treatment of ischemia and a variety of oxidative stress-related neuronal diseases. [BMB Reports 2016; 49(7): 382-387].


Assuntos
Glutationa S-Transferase pi/metabolismo , Hipocampo/metabolismo , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteamina/análogos & derivados , Cisteamina/metabolismo , Glutationa S-Transferase pi/genética , Fármacos Neuroprotetores/farmacologia , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
10.
Biochem Biophys Res Commun ; 472(1): 83-7, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26920057

RESUMO

TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/genética , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
11.
Biochem Biophys Res Commun ; 465(2): 200-5, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26241676

RESUMO

The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , DNA Ribossômico/genética , Histona Desacetilases/genética , Transcrição Gênica , Adenosina Trifosfatases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Ribossômico/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Histona Desacetilases/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Protoplastos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transdução de Sinais
12.
Biomaterials ; 64: 45-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26117230

RESUMO

Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue. In this study, we examined the role of transduced PEP-1-PON1 protein in repressing oxidative stress-mediated inflammatory response in microglial BV2 cells after exposure to lipopolysaccharide (LPS). Moreover, we identified the functions of transduced PEP-1-PON1 proteins which include, mitigating mitochondrial damage, decreasing reactive oxidative species (ROS) production, matrix metalloproteinase-9 (MMP-9) expression and protecting against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells. Furthermore, transduced PEP-1-PON1 protein reduced MMP-9 expression and protected against dopaminergic neuronal cell death in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Taken together, these results suggest a promising therapeutic application of PEP-1-PON1 proteins against PD and other inflammation and oxidative stress-related neuronal diseases.


Assuntos
Arildialquilfosfatase/uso terapêutico , Peptídeos Penetradores de Células/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Terapia Genética , Microglia/efeitos dos fármacos , Transtornos Parkinsonianos/terapia , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Arildialquilfosfatase/administração & dosagem , Encéfalo/patologia , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/administração & dosagem , Células Cultivadas , Neurônios Dopaminérgicos/patologia , Indução Enzimática/efeitos dos fármacos , Vetores Genéticos/uso terapêutico , Humanos , Lipopolissacarídeos/toxicidade , Metaloproteinase 9 da Matriz/biossíntese , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Microglia/fisiologia , Neuroblastoma/patologia , Estresse Oxidativo , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/patologia , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/metabolismo , Transdução Genética
13.
BMB Rep ; 48(11): 618-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25817214

RESUMO

FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI.


Assuntos
Queimaduras Químicas/tratamento farmacológico , Córnea/efeitos dos fármacos , Lesões da Córnea/prevenção & controle , Queimaduras Oculares/tratamento farmacológico , Proteínas de Ligação a Tacrolimo/farmacologia , Animais , Queimaduras Químicas/patologia , Córnea/patologia , Neovascularização da Córnea/metabolismo , Modelos Animais de Doenças , Queimaduras Oculares/patologia , Inflamação/metabolismo , Masculino , Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
14.
PLoS One ; 9(1): e86034, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465855

RESUMO

Paraoxonase 1 (PON1) is an antioxidant enzyme which plays a central role in various diseases. However, the mechanism and function of PON1 protein in inflammation are poorly understood. Since PON1 protein alone cannot be delivered into cells, we generated a cell permeable PEP-1-PON1 protein using protein transduction domains, and examined whether it can protect against cell death in lipopolysaccharide (LPS) or hydrogen peroxide (H2O2)-treated Raw 264.7 cells as well as mice with 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced skin inflammation. We demonstrated that PEP-1-PON1 protein transduced into Raw 264.7 cells and markedly protected against LPS or H2O2-induced cell death by inhibiting cellular reactive oxygen species (ROS) levels, the inflammatory mediator's expression, activation of mitogen-activated protein kinases (MAPKs) and cellular apoptosis. Furthermore, topically applied PEP-1-PON1 protein ameliorates TPA-treated mice skin inflammation via a reduction of inflammatory response. Our results indicate that PEP-1-PON1 protein plays a key role in inflammation and oxidative stress in vitro and in vivo. Therefore, we suggest that PEP-1-PON1 protein may provide a potential protein therapy against oxidative stress and inflammation.


Assuntos
4-Butirolactona/análogos & derivados , Anti-Inflamatórios/farmacologia , Dermatite de Contato/metabolismo , Macrófagos/imunologia , 4-Butirolactona/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dermatite de Contato/imunologia , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Acetato de Tetradecanoilforbol
15.
BMB Rep ; 46(11): 561-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24152913

RESUMO

We examined the ways in which fenobam could promote not only the transduction of PEP-1-FK506BP into cells and tissues but also the neuroprotective effect of PEP-1-FK506BP against ischemic damage. Fenobam strongly enhanced the protective effect of PEP-1-FK506BP against H2O2-induced toxicity and DNA fragmentation in C6 cells. In addition, combinational treatment of fenobam with PEP-1-FK506BP significantly inhibited the activation of Akt and MAPK induced by H2O2, compared to treatment with PEP-1-FK506BP alone. Interestingly, our results showed that fenobam significantly increased the transduction of PEP-1-FK506BP into both C6 cells and the hippocampus of gerbil brains. Subsequently, a transient ischemic gerbil model study demonstrated that fenobam pretreatment led to the increased neuroprotection of PEP-1-FK506BP in the CA1 region of the hippocampus. Therefore, these results suggest that fenobam can be a useful agent to enhance the transduction of therapeutic PEP-1-fusion proteins into cells and tissues, thereby promoting their neuroprotective effects.


Assuntos
Imidazóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a Tacrolimo/farmacologia , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Gerbillinae , Hipocampo/metabolismo , Peróxido de Hidrogênio/toxicidade , Imidazóis/química , Imidazóis/uso terapêutico , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas de Ligação a Tacrolimo/biossíntese , Proteínas de Ligação a Tacrolimo/uso terapêutico , Transdução Genética
16.
Free Radic Biol Med ; 63: 432-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770196

RESUMO

Sirtuin 2 (SIRT2), a member of the sirtuin family of proteins, plays an important role in cell survival. However, the biological function of SIRT2 protein is unclear with respect to inflammation and oxidative stress. In this study, we examined the protective effects of SIRT2 on inflammation and oxidative stress-induced cell damage using a cell permeative PEP-1-SIRT2 protein. Purified PEP-1-SIRT2 was transduced into RAW 264.7 cells in a time- and dose-dependent manner and protected against lipopolysaccharide- and hydrogen peroxide (H2O2)-induced cell death and cytotoxicity. Also, transduced PEP-1-SIRT2 significantly inhibited the expression of cytokines as well as the activation of NF-κB and mitogen-activated protein kinases (MAPKs). In addition, PEP-1-SIRT2 decreased cellular levels of reactive oxygen species (ROS) and of cleaved caspase-3, whereas it elevated the expression of antioxidant enzymes such as MnSOD, catalase, and glutathione peroxidase. Furthermore, topical application of PEP-1-SIRT2 to 12-O-tetradecanoylphorbol 13-acetate-treated mouse ears markedly inhibited expression levels of COX-2 and proinflammatory cytokines as well as the activation of NF-κB and MAPKs. These results demonstrate that PEP-1-SIRT2 inhibits inflammation and oxidative stress by reducing the levels of expression of cytokines and ROS, suggesting that PEP-1-SIRT2 may be a potential therapeutic agent for various disorders related to ROS, including skin inflammation.


Assuntos
Inflamação/metabolismo , Estresse Oxidativo , Peptídeos/metabolismo , Sirtuína 2/metabolismo , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Peróxido de Hidrogênio/toxicidade , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , Peptídeos/administração & dosagem , Peptídeos/síntese química , Peptídeos/genética , Ésteres de Forbol/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 2/administração & dosagem , Sirtuína 2/genética , Pele/efeitos dos fármacos , Pele/crescimento & desenvolvimento
17.
Plant Cell Physiol ; 51(9): 1537-47, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20668225

RESUMO

Arabidopsis thaliana homeobox 12 (ATHB12) is rapidly induced by ABA and water stress. A T-DNA insertion mutant of ATHB12 with a reduced level of ATHB12 expression in stems had longer inflorescence stems and reduced sensitivity to ABA during germination. A high level of transcripts of gibberellin 20-oxidase 1 (GA20ox1), a key enzyme in the synthesis of gibberellins, was detected in athb12 stems, while transgenic lines overexpressing ATHB12 (A12OX) had a reduced level of GA20ox1 in stems. Consistent with these data, ABA treatment of wild-type plants resulted in decreased GA20ox1 expression whereas ABA treatment of the athb12 mutant gave rise to slightly decreased GA20ox1 expression. Retarded stem growth in 3-week-old A12OX plants was rescued by exogenous GA(9), but not by GA(12), and less GA(9) was detected in A12OX stems than in wild-type stems. These data imply that ATHB12 decreases GA20ox1 expression in stems. On the other hand, the stems of A12OX plants grew rapidly after the first 3 weeks, so that they were almost as high as wild-type plants at about 5 weeks after germination. We also found changes in the stems of transgenic plants overexpressing ATHB12, such as alterations of expression GA20ox and GA3ox genes, and of GA(4) levels, which appear to result from feedback regulation. Repression of GA20ox1 by ATHB12 was confirmed by transfection of leaf protoplasts. ABA-treated protoplasts also showed increased ATHB12 expression and reduced GA20ox1 expression. These findings all suggest that ATHB12 negatively regulates the expression of a GA 20-oxidase gene in inflorescence stems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Homeodomínio/metabolismo , Inflorescência/crescimento & desenvolvimento , Oxigenases de Função Mista/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Proteínas de Homeodomínio/genética , Zíper de Leucina , Mutagênese Insercional , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
18.
Biochem Biophys Res Commun ; 397(1): 22-6, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20470756

RESUMO

During symbiotic nodule development in legume roots, early signaling events between host and rhizobia serve critical determinants for the proper onset of nodule morphogenesis, nitrogen fixation, and assimilation. Previously we isolated thioredoxin from soybean nodules as one of differentially expressed genes during nodulation and noted its positive role in nitrogen fixation. To identify the target proteins of thioredoxin in nodules, we used thioredoxin affinity chromatography followed by mass spectrometry. Nodulin-35, a subunit of uricase, was found to be a target of thioredoxin. Their interaction was confirmed by pull-down assay and by bimolecular fluorescent complementation. With an increased uricase activity observed also in the presence of thioredoxin, these results appear to implicate a novel role of thioredoxin in the regulation of enzyme activities involved in nodule development and nitrogen fixation.


Assuntos
Glycine max/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Tiorredoxinas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Glycine max/metabolismo , Glycine max/microbiologia , Simbiose , Tiorredoxinas/genética
19.
Biochem Biophys Res Commun ; 393(3): 492-7, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20152813

RESUMO

E3 ubiquitin (Ub) ligases play diverse roles in cellular regulation in eukaryotes. Three homologous AtRmas (AtRma1, AtRma2, and AtRma3) were recently identified as ER-localized Arabidopsis homologs of human RING membrane-anchor E3 Ub ligase. Here, auxin binding protein 1 (ABP1), one of the auxin receptors in Arabidopsis, was identified as a potential substrate of AtRma2 through a yeast two-hybrid assay. An in vitro pull-down assay confirmed the interaction of full-length AtRma2 with ABP1. AtRma2 was transiently expressed in tobacco (Nicotiana benthamiana) plants through an Agrobacterium-mediated infiltration method and bound ABP1 in vivo. In vitro ubiquitination assays revealed that bacterially-expressed AtRma2 ubiquitinated ABP1. ABP1 was poly-ubiquitinated in tobacco cells and its stability was significantly increased in the presence of MG132, a 26S proteasome inhibitor. This suggests that ABP1 is controlled by the Ub/26S proteasome system. Therefore, AtRma2 is likely involved in the cellular regulation of ABP1 expression levels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Arabidopsis/genética , Inibidores de Cisteína Proteinase/farmacologia , Leupeptinas/farmacologia , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Nicotiana/citologia , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética
20.
Plant Cell Rep ; 28(4): 561-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19224217

RESUMO

Ubiquitination affects diverse physiological processes in eukaryotic cells. AtRMA1 was previously identified as an Arabidopsis homolog of human RING membrane-anchor E3 ubiquitin (Ub) ligase. Here, we identified two additional AtRMA homologs, AtRMA2 and AtRMA3. The predicted AtRMA proteins contain a RING motif and a trans-membrane domain in their N-terminal and extreme C-terminal regions, respectively. Bacterially expressed AtRMAs exhibited E3 ligase activity in vitro, which was abrogated by mutation of the conserved cysteine residue in their RING domains. In vivo targeting experiments using an Arabidopsis protoplast-transfection system showed that all three AtRMAs are localized to the ER. Although RT-PCR analysis indicated that AtRMA mRNAs were expressed constitutively in all tissues examined, their promoter activities were differentially detected in a tissue-specific fashion in AtRMA-promoter::GUS transgenic Arabidopsis plants. The AtRMA1 and AtRMA3 genes are predominantly expressed in major tissues, such as cotyledons, leaves, shoot-root junction, roots, and anthers, while AtRMA2 expression is restricted to the root tips and leaf hydathodes. We suggest that a ubiquitnation pathway involving these AtRMA E3 Ub ligases may play a role in the growth and development of Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Membrana/genética , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Análise de Sequência de DNA , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...