Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 21(7): 1047-1059, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35511740

RESUMO

ADAM metallopeptidase domain 9 (ADAM9) is a member of the ADAM family of multifunctional, multidomain type 1 transmembrane proteins. ADAM9 is overexpressed in many cancers, including non-small cell lung, pancreatic, gastric, breast, ovarian, and colorectal cancer, but exhibits limited expression in normal tissues. A target-unbiased discovery platform based on intact tumor and progenitor cell immunizations, followed by an IHC screen, led to the identification of anti-ADAM9 antibodies with selective tumor-versus-normal tissue binding. Subsequent analysis revealed anti-ADAM9 antibodies were efficiently internalized and processed by tumor cells making ADAM9 an attractive target for antibody-drug conjugate (ADC) development. Here, we describe the preclinical evaluation of IMGC936, a novel ADC targeted against ADAM9. IMGC936 is comprised of a high-affinity humanized antibody site-specifically conjugated to DM21-C, a next-generation linker-payload that combines a maytansinoid microtubule-disrupting payload with a stable tripeptide linker, at a drug antibody ratio of approximately 2.0. In addition, the YTE mutation (M252Y/S254T/T256E) was introduced into the CH2 domain of the antibody Fc to maximize in vivo plasma half-life and exposure. IMGC936 exhibited cytotoxicity toward ADAM9-positive human tumor cell lines, as well as bystander killing, potent antitumor activity in human cell line-derived xenograft and patient-derived xenograft tumor models, and an acceptable safety profile in cynomolgus monkeys with favorable pharmacokinetic properties. Our preclinical data provide a strong scientific rationale for the further development of IMGC936 as a therapeutic candidate for the treatment of ADAM9-positive cancers. A first-in-human study of IMGC936 in patients with advanced solid tumors has been initiated (NCT04622774).


Assuntos
Imunoconjugados , Proteínas ADAM , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Imunoconjugados/química , Proteínas de Membrana/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Ther ; 19(11): 2235-2244, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32967924

RESUMO

B7-H3, also referred to as CD276, is a member of the B7 family of immune regulatory proteins. B7-H3 is overexpressed on many solid cancers, including prostate cancer, renal cell carcinoma, melanoma, squamous cell carcinoma of the head and neck, non-small cell lung cancer, and breast cancer. Overexpression of B7-H3 is associated with disease severity, risk of recurrence and reduced survival. In this article, we report the preclinical development of MGC018, an antibody-drug conjugate targeted against B7-H3. MGC018 is comprised of the cleavable linker-duocarmycin payload, valine-citrulline-seco duocarmycin hydroxybenzamide azaindole (vc-seco-DUBA), conjugated to an anti-B7-H3 humanized IgG1/kappa mAb through reduced interchain disulfides, with an average drug-to-antibody ratio of approximately 2.7. MGC018 exhibited cytotoxicity toward B7-H3-positive human tumor cell lines, and exhibited bystander killing of target-negative tumor cells when cocultured with B7-H3-positive tumor cells. MGC018 displayed potent antitumor activity in preclinical tumor models of breast, ovarian, and lung cancer, as well as melanoma. In addition, antitumor activity was observed toward patient-derived xenograft models of breast, prostate, and head and neck cancer displaying heterogeneous expression of B7-H3. Importantly, MGC018 exhibited a favorable pharmacokinetic and safety profile in cynomolgus monkeys following repeat-dose administration. The antitumor activity observed preclinically with MGC018, together with the positive safety profile, provides evidence of a potentially favorable therapeutic index and supports the continued development of MGC018 for the treatment of solid cancers. GRAPHICAL ABSTRACT: http://mct.aacrjournals.org/content/molcanther/19/11/2235/F1.large.jpg.


Assuntos
Antígenos B7/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antígenos B7/genética , Antígenos B7/metabolismo , Efeito Espectador , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos , Técnicas de Silenciamento de Genes , Humanos , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/isolamento & purificação , Imunoconjugados/química , Imunoconjugados/isolamento & purificação , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Neuropharmacology ; 58(2): 365-73, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19835892

RESUMO

The recent discovery of allosteric potentiators and agonists of the muscarinic M(1) receptor represents a significant advance in the muscarinic receptor pharmacology. In the current study we describe the receptor pharmacology and pro-cognitive action of the allosteric agonist AC-260584. Using in vitro cell-based assays with cell proliferation, phosphatidylinositol hydrolysis or calcium mobilization as endpoints, AC-260584 was found to be a potent (pEC(50) 7.6-7.7) and efficacious (90-98% of carbachol) muscarinic M(1) receptor agonist. Furthermore, as compared to orthosteric binding agonists, AC-260584 showed functional selectivity for the M(1) receptor over the M(2), M(3), M(4) and M(5) muscarinic receptor subtypes. Using GTPgammaS binding assays, its selectivity was found to be similar in native tissues expressing mAChRs to its profile in recombinant systems. In rodents, AC-260584 activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in the hippocampus, prefrontal cortex and perirhinal cortex. The ERK1/2 activation was dependent upon muscarinic M(1) receptor activation since it was not observed in M(1) knockout mice. AC-260584 also improved the cognitive performance of mice in the novel object recognition assay and its action is blocked by the muscarinic receptor antagonist pirenzepine. Taken together these results indicate for the first time that a M(1) receptor agonist selective over the other mAChR subtypes can have a symptomatically pro-cognitive action. In addition, AC-260584 was found to be orally bioavailable in rodents. Therefore, AC-260584 may serve as a lead compound in the development of M(1) selective drugs for the treatment of cognitive impairment associated with schizophrenia and Alzheimer's disease.


Assuntos
Benzoxazinas/farmacologia , Cognição/efeitos dos fármacos , Nootrópicos/farmacologia , Receptor Muscarínico M1/agonistas , Administração Oral , Animais , Benzoxazinas/administração & dosagem , Benzoxazinas/farmacocinética , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Cognição/fisiologia , Cricetinae , Cricetulus , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Muscarínicos/administração & dosagem , Agonistas Muscarínicos/farmacocinética , Agonistas Muscarínicos/farmacologia , Células NIH 3T3 , Nootrópicos/administração & dosagem , Nootrópicos/farmacocinética , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
4.
J Steroid Biochem Mol Biol ; 109(1-2): 129-37, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18164613

RESUMO

Because of the limitations and liabilities of current testosterone therapies, non-steroidal tissue-selective androgen receptor modulators may provide a clinically meaningful advance in therapy. Using a functional cell-based assay AC-262536 was identified as a potent and selective AR ligand, with partial agonist activity relative to the natural androgen testosterone. A 2-week chronic study in castrated male rats indicated that AC-262536 significantly improves anabolic parameters in these animals, especially in stimulating the growth of the levator ani and in suppressing elevated LH levels. In sharp contrast to testosterone, AC-262536 has weak androgenic effects, as measured by prostate and seminal vesicle weights. Thus, AC-262536 represents a novel class of selective androgen receptor modulators (SARMs) with beneficial anabolic effects.


Assuntos
Androgênios , Compostos Azabicíclicos/farmacologia , Naftalenos/farmacologia , Anabolizantes/farmacologia , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA/genética , Genes Reporter , Humanos , Ligantes , Masculino , Músculos/anatomia & histologia , Músculos/efeitos dos fármacos , Orquiectomia , Especificidade de Órgãos , Hipófise/efeitos dos fármacos , Hipófise/fisiologia , Próstata/anatomia & histologia , Próstata/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Glândulas Seminais/anatomia & histologia , Glândulas Seminais/efeitos dos fármacos , Testosterona/farmacologia
5.
J Pharmacol Exp Ther ; 317(2): 910-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16469866

RESUMO

The in vitro and in vivo pharmacological properties of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N'-(4-(2-methylpropyloxy)phenylmethyl)carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103) are presented. A potent 5-hydroxytryptamine (5-HT)(2A) receptor inverse agonist ACP-103 competitively antagonized the binding of [(3)H]ketanserin to heterologously expressed human 5-HT(2A) receptors with a mean pK(i) of 9.3 in membranes and 9.70 in whole cells. ACP-103 displayed potent inverse agonist activity in the cell-based functional assay receptor selection and amplification technology (R-SAT), with a mean pIC(50) of 8.7. ACP-103 demonstrated lesser affinity (mean pK(i) of 8.80 in membranes and 8.00 in whole cells, as determined by radioligand binding) and potency as an inverse agonist (mean pIC(50) 7.1 in R-SAT) at human 5-HT(2C) receptors, and lacked affinity and functional activity at 5-HT(2B) receptors, dopamine D(2) receptors, and other human monoaminergic receptors. Behaviorally, ACP-103 attenuated head-twitch behavior (3 mg/kg p.o.), and prepulse inhibition deficits (1-10 mg/kg s.c.) induced by the 5-HT(2A) receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride in rats and reduced the hyperactivity induced in mice by the N-methyl-d-aspartate receptor noncompetitive antagonist 5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate; MK-801) (0.1 and 0.3 mg/kg s.c.; 3 mg/kg p.o.), consistent with a 5-HT(2A) receptor mechanism of action in vivo and antipsychotic-like efficacy. ACP-103 demonstrated >42.6% oral bioavailability in rats. Thus, ACP-103 is a potent, efficacious, orally active 5-HT(2A) receptor inverse agonist with a behavioral pharmacological profile consistent with utility as an antipsychotic agent.


Assuntos
Comportamento Animal/efeitos dos fármacos , Piperidinas/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/farmacologia , Ureia/análogos & derivados , Animais , Disponibilidade Biológica , Clonagem Molecular , Humanos , Masculino , Camundongos , Células NIH 3T3 , Piperidinas/farmacocinética , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacocinética , Ureia/farmacocinética , Ureia/farmacologia
6.
J Pharmacol Exp Ther ; 310(3): 943-51, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15102927

RESUMO

The primary purpose of the present series of experiments was to characterize the in vitro and in vivo pharmacology profile of 2-(4-methoxy-phenyl)-N-(4-methyl-benzyl)-N-(1-methyl-piperidin-4-yl)-acetamide hydrochloride (AC-90179), a selective serotonin (5-HT2A) receptor inverse agonist, in comparison with the antipsychotics haloperidol and clozapine. The secondary purpose was to characterize the pharmacokinetic profile of AC-90179. Like all atypical antipsychotics, AC-90179 shows high potency as an inverse agonist and competitive antagonist at 5HT2A receptors. In addition, AC-90179 exhibits antagonism at 5HT2C receptors. In contrast, AC-90179 does not have significant potency for D2 and H1 receptors that have been implicated in the dose-limiting side effects of other antipsychotic drugs. The ability of AC-90179 to block 5-HT2A receptor signaling in vivo was demonstrated by its blockade of the rate-decreasing effects of the 5-HT2A agonist, (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride, under a fixed ratio schedule of reinforcement. Similar to clozapine and haloperidol, AC-90179 attenuated phencyclidine-induced hyperactivity. Although haloperidol impaired acquisition of a simple autoshaped response and induced cataleptic-like effects at behaviorally efficacious doses, AC-90179 and clozapine did not. Furthermore, unlike haloperidol and clozapine, AC-90179 did not decrease spontaneous locomotor behavior at efficacious doses. Limited oral bioavailability of AC-90179 likely reflects rapid metabolism rather than poor absorption. Taken together, a compound with a similar pharmacological profile as AC-90179 and with increased oral bioavailability may have potential for the treatment of psychosis.


Assuntos
Benzamidas/farmacologia , Piperidinas/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/farmacologia , Células 3T3 , Animais , Benzamidas/efeitos adversos , Benzamidas/sangue , Disponibilidade Biológica , Encéfalo/metabolismo , Células CACO-2 , Catalepsia/induzido quimicamente , Permeabilidade da Membrana Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nariz/efeitos dos fármacos , Piperidinas/efeitos adversos , Piperidinas/sangue , Ensaio Radioligante , Ratos , Ratos Wistar , Antagonistas da Serotonina/efeitos adversos , Antagonistas da Serotonina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA