Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791551

RESUMO

Rotavirus is the main cause of acute diarrhea in children up to five years of age. In this regard, probiotics are commonly used to treat or prevent gastroenteritis including viral infections. The anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana, by reducing viral infectivity and improving IFN-type I response, has been previously reported. The present study aimed to study the effect of B. longum and/or C. sorokiniana on modulating the antiviral cellular immune response mediated by IFN-γ, IL-10, SOCS3, STAT1, and STAT2 genes in rotavirus-infected cells. To determine the mRNA relative expression of these genes, HT-29 cells were treated with B. longum and C. sorokiniana alone or in combination, followed by rotavirus infection. In addition, infected cells were treated with B. longum and/or C. sorokiniana. Cellular RNA was purified, used for cDNA synthesis, and amplified by qPCR. Our results demonstrated that the combination of B. longum and C. sorokiniana stimulates the antiviral cellular immune response by upregulating IFN-γ and may block pro-inflammatory cytokines by upregulating IL-10 and SOCS3. The results of our study indicated that B. longum, C. sorokiniana, or their combination improve antiviral cellular immune response and might modulate pro-inflammatory responses.


Assuntos
Bifidobacterium longum , Chlorella , Interferon gama , Interleucina-10 , Probióticos , Infecções por Rotavirus , Proteína 3 Supressora da Sinalização de Citocinas , Humanos , Células HT29 , Interferon gama/metabolismo , Interleucina-10/metabolismo , Probióticos/farmacologia , Rotavirus/fisiologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Fator de Transcrição STAT1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-37355162

RESUMO

The shrimp Litopenaeus vannamei is the main farmed crustacean worldwide. This shrimp suffers environmental changes in oxygen availability that affect its energy metabolism. Pyruvate kinase (PK) catalyzes the last reaction of glycolysis and is key for the regulation of glycolysis and gluconeogenesis. There is ample knowledge about mammalian PK, but in crustaceans, the information is very scarce. In this study, we analyzed in silico the structures of the PK gene and protein. Also, the effects of hypoxia on gene expression, enzymatic activity, glucose, and lactate in hepatopancreas and muscle were analyzed. The PK gene is 15,103 bp and contains 11 exons and 10 introns, producing four mRNA variants by alternative splicing and named PK1, PK2, PK3 and PK4, that results in two proteins with longer C-terminus and two with a 12 bp insertion. The promoter contains putative binding sites for transcription factors (TF) that are typically involved in stress responses. The deduced amino acid sequences contain the classic domains, binding sites for allosteric effectors and potential reversible phosphorylation residues. Protein modeling indicates a homotetramer with highly conserved structure. The effect of hypoxia for 6 and 12 h showed tissue-specific patterns, with higher expression, enzyme activity and lactate in muscle, but higher glucose in hepatopancreas. Changes in response to hypoxia were detected at 12 h in expression with induction in muscle and reduction in hepatopancreas, while enzyme activity was maintained, and glucose and lactate decreased. These results show rapid changes in expression and metabolites, while enzyme activity was maintained to cope with short-term hypoxia.


Assuntos
Penaeidae , Piruvato Quinase , Animais , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/metabolismo , Glucose/metabolismo , Lactatos , Penaeidae/metabolismo , Mamíferos/metabolismo
3.
Medicina (Kaunas) ; 58(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36295596

RESUMO

Background and Objectives: Perilipins 1-5 (PLIN) are lipid droplet-associated proteins that participate in regulating lipid storage and metabolism, and the PLIN5 isoform is known to form a nuclear complex with peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) to regulate lipid metabolism gene expression. However, the changes in PLIN isoforms' expression in response to pregnancy-induced cardiac hypertrophy are not thoroughly studied. The aim of this study was to quantify the mRNA expression of PLIN isoforms and PGC-1α along with total triacylglycerol (TAG) and cholesterol levels during late pregnancy and the postpartum period in the rat left ventricle. Materials and Methods: Female Sprague-Dawley rats were divided into three groups: non-pregnant, late pregnancy, and postpartum. The mRNA and protein levels were evaluated using quantitative RT-PCR and Western blotting, respectively. TAG and total cholesterol content were evaluated using commercial colorimetric methods. Results: The expression of mRNAs for PLIN1, 2, and 5 increased during pregnancy and the postpartum period. PGC-1α mRNA and protein expression increased during pregnancy and the postpartum period. Moreover, TAG and total cholesterol increased during pregnancy and returned to basal levels after pregnancy. Conclusions: Our results demonstrate that pregnancy upregulates differentially the expression of PLIN isoforms along with PGC-1α, suggesting that together they might be involved in the regulation of the lipid metabolic shift induced by pregnancy.


Assuntos
Receptores Ativados por Proliferador de Peroxissomo , Fatores de Transcrição , Ratos , Feminino , Animais , Gravidez , Perilipina-1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triglicerídeos , Colesterol
4.
Genes (Basel) ; 13(5)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35627302

RESUMO

The major histocompatibility complex (MHC) enables vertebrates to cope with pathogens and maintain healthy populations, thus making it a unique set of loci for addressing ecology and evolutionary biology questions. The aim of our study was to examine the variability of Heermann's Gull MHC class II (MHCIIB) and compare these loci with other Charadriiformes. Fifty-nine MHCIIB haplotypes were recovered from sixty-eight Heermann's Gulls by cloning, of them, twelve were identified as putative true alleles, forty-five as unique alleles, and two as pseudogenes. Intra and interspecific relationships indicated at least two loci in Heermann's Gull MHCIIB and trans-species polymorphism among Charadriiformes (coinciding with the documented evidence of two ancient avian MHCIIB lineages, except in the Charadriidae family). Additionally, sites under diversifying selection revealed a better match with peptide-binding sites inferred in birds than those described in humans. Despite the negative anthropogenic activity reported on Isla Rasa, Heermann's Gull showed MHCIIB variability consistent with population expansion, possibly due to a sudden growth following conservation efforts. Duplication must play an essential role in shaping Charadriiformes MHCIIB variability, buffering selective pressures through balancing selection. These findings suggest that MHC copy number and protected islands can contribute to seabird conservation.


Assuntos
Charadriiformes , Animais , Aves/genética , Charadriiformes/genética , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Filogenia , Seleção Genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-30041062

RESUMO

Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor that induces genes involved in glucose metabolism. HIF-1 is formed by a regulatory α-subunit (HIF-1α) and a constitutive ß-subunit (HIF-1ß). The white spot syndrome virus (WSSV) induces a shift in glucose metabolism and oxidative stress. HIF-1α is associated with the induction of metabolic changes in tissues of WSSV-infected shrimp. However, the contributions of HIF-1 to viral load and antioxidant responses in WSSV-infected shrimp have been not examined. In this study, the effect of HIF-1 silencing on viral load and the expression and activity of antioxidant enzymes (superoxide dismutase-SOD, glutathione S-transferase-GST, and catalase) along with oxidative damage (lipid peroxidation and protein carbonyl) in tissues of white shrimp infected with the WSSV were studied. The viral load increased in hepatopancreas and muscle after WSSV infection, and the accumulative mortality was of 100% at 72 h post-infection. The expression and activity of SOD, catalase, and GST decreased in each tissue evaluated after WSSV infection. Protein carbonyl concentrations increased in each tissue after WSSV infection, while lipid peroxidation increased in hepatopancreas, but not in muscle. Silencing of HIF-1α decreased the WSSV viral load in hepatopancreas and muscle of infected shrimp along with shrimp mortality. Silencing of HIF-1α ameliorated the antioxidant response in a tissue-specific manner, which translated to a decrease in oxidative damage. These results suggest that HIF-1 is essential for restoring the antioxidant response, which counters the oxidative injury associated with WSSV infection.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Animais , Aquicultura , DNA Viral/isolamento & purificação , Inativação Gênica , Hepatopâncreas/crescimento & desenvolvimento , Hepatopâncreas/metabolismo , Hepatopâncreas/virologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções Intramusculares , Peroxidação de Lipídeos , México , Músculos/metabolismo , Músculos/virologia , Especificidade de Órgãos , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Penaeidae/crescimento & desenvolvimento , Penaeidae/metabolismo , Carbonilação Proteica , Interferência de RNA , RNA de Cadeia Dupla/administração & dosagem , RNA de Cadeia Dupla/metabolismo , Carga Viral , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Vírus da Síndrome da Mancha Branca 1/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-26219579

RESUMO

Crustaceans overcome osmotic disturbances by regulating their intracellular concentration of ions and osmolytes. Glycine betaine (GB), an osmolyte accumulated in response to hyperosmotic stress, is synthesized by betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) through the oxidation of betaine aldehyde. A partial BADH cDNA sequence from the white shrimp Litopenaeus vannamei was obtained and its organ-specific expression during osmotic stress (low and high salinity) was evaluated. The partial BADH cDNA sequence (LvBADH) is 1103bp long and encodes an open reading frame for 217 protein residues. The amino acid sequence of LvBADH is related to that of other BADHs, TMABA-DH and ALDH9 from invertebrate and vertebrate homologues, and includes the essential domains of their function and regulation. LvBADH activity and mRNA expression were detected in the gills, hepatopancreas and muscle with the highest levels in the hepatopancreas. LvBADH mRNA expression increased 2-3-fold in the hepatopancreas and gills after 7days of osmotic variation (25 and 40ppt). In contrast, LvBADH mRNA expression in muscle decreased 4-fold and 15-fold after 7days at low and high salinity, respectively. The results indicate that LvBADH is ubiquitously expressed, but its levels are organ-specific and regulated by osmotic stress, and that LvBADH is involved in the cellular response of crustaceans to variations in environmental salinity.


Assuntos
Betaína-Aldeído Desidrogenase/genética , Betaína-Aldeído Desidrogenase/metabolismo , Decápodes/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Betaína-Aldeído Desidrogenase/química , DNA Complementar/química , DNA Complementar/genética , Decápodes/enzimologia , Decápodes/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , Pressão Osmótica , RNA Mensageiro/metabolismo
7.
Biomed Res Int ; 2014: 984785, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147829

RESUMO

The pathologic cardiac remodeling has been widely documented; however, the physiological cardiac remodeling induced by pregnancy and its reversion in postpartum are poorly understood. In the present study we investigated the changes in collagen I (Col I) and collagen III (Col III) mRNA and protein levels in left ventricle from rat heart during pregnancy and postpartum. Col I and Col III mRNA expression in left ventricle samples during pregnancy and postpartum were analyzed by using quantitative PCR. Data obtained from gene expression show that Col I and Col III in left ventricle are upregulated during pregnancy with reversion in postpartum. In contrast to gene expression, the protein expression evaluated by western blot showed that Col I is downregulated and Col III is upregulated in left ventricle during pregnancy. In conclusion, the pregnancy differentially regulates collagens types I and III in heart; this finding could be an important molecular mechanism that regulates the ventricular stiffness in response to blood volume overload present during pregnancy which is reversed in postpartum.


Assuntos
Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Ventrículos do Coração/metabolismo , Animais , Regulação para Baixo/genética , Feminino , Expressão Gênica/genética , Período Pós-Parto/genética , Gravidez , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Regulação para Cima/genética
8.
Comp Biochem Physiol C Toxicol Pharmacol ; 150(3): 395-405, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19540931

RESUMO

Hypoxia inducible factor 1 (HIF-1) is a key transcription factor that regulates a variety of molecular responses to hypoxia. Some marine crustaceans experience changes of oxygen tension in their aquatic environment, but knowledge about the function and expression of HIF-1 is very limited. HIF-1 is a heterodimer composed by alpha and beta subunits. We report the complete cDNA sequences of HIF-1alpha and HIF-1beta from the white shrimp Litopenaeus vannamei. HIF-1alpha (LvHIF-1alpha) is 3672bp and codes for 1050 amino acids, while HIF-1beta is 2135bp (LvHIF-1beta) and 608 amino acids. Both, the alpha and beta subunits have the helix-loop-helix (bHLH) and PAS domains. HIF-1alpha also has the oxygen dependent degradation (ODD) and the C-terminal transactivation domain (C-TAD), important for regulation in normoxia. Phylogenetic analyses of the proteins indicate separation of invertebrates from vertebrates. Large differences of HIF-1alpha and HIF-1beta transcripts abundance were detected in gills, hepatopancreas and muscle under normoxia (6mg/L dissolved oxygen, DO) and hypoxia (2.5 and 1.5mg/L DO). HIF-1alpha was more abundant in gills and HIF-1beta in hepatopancreas. Large changes in response to hypoxia were detected for HIF-1alpha in gills, while HIF-1beta remained fairly constant. Glucose and lactate in hemolymph increased rapidly in hypoxia in all cases and up to 4.7 and 5.0-fold, respectively, in response to 1.5mg/L DO for 1h.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Sequência de Aminoácidos , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Sequência de Bases , DNA Complementar/química , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Dados de Sequência Molecular , Penaeidae/genética , Penaeidae/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA