Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319030

RESUMO

Protein S-palmitoylation mediated by DHHCs is recognized as a distinct and reversible form of lipid modification connected with several health perturbations, including neurodegenerative disorders, cancer, and autoimmune conditions. However, the pharmacological characteristics of current pan-DHHC inhibitors, particularly their toxicity and off-target effects, have hindered their in-depth cellular investigations. The therapeutic properties of the natural compounds, with minimal side effects, allowed us to evaluate them as DHHC-targeting inhibitors. Here, we performed an insilico screening of 115 phytochemicals to assess their interactions with the DHHC20 binding site. Among these compounds, lutein, 5-hydroxyflavone, and 6-hydroxyflavone exhibited higher binding energy (-9.2, -8.5, and -8.5 kcal/mol) in the DHHC20 groove compared to pan-DHHC inhibitor 2-BP (-7.0 kcal/mol). Furthermore, we conducted a 100 ns MD simulation to evaluate the stability of these complexes under physiological conditions. The MDsimulation results indicated that DHHC20 formed a more stable conformation with lutein compared to 5-hydroxyflavone and 6-hyroxyflavone via hydrophobic and H-bond interactions. Conclusively, these results could serve as a promising starting point for exploring the use of these natural molecules as DHHC20 inhibitors.Communicated by Ramaswamy H. Sarma.

2.
Sci Rep ; 14(1): 4495, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402260

RESUMO

Extrapulmonary tuberculosis with a renal involvement can be a manifestation of a disseminated infection that requires therapeutic intervention, particularly with a decrease in efficacy of conventional regimens. In the present study, we investigated the therapeutic potency of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in the complex anti-tuberculosis treatment (ATT). A rabbit model of renal tuberculosis (rTB) was constructed by injecting of the standard strain Mycobacterium tuberculosis H37Rv into the cortical layer of the kidney parenchyma. Isolated rabbit MSC-EVs were intravenously administered once as an addition to standard ATT (isoniazid, pyrazinamide, and ethambutol). The therapeutic efficacy was assessed by analyzing changes of blood biochemical biomarkers and levels of anti- and pro-inflammatory cytokines as well as by renal computed tomography with subsequent histological and morphometric examination. The therapeutic effect of therapy with MSC-EVs was shown by ELISA method that confirmed a statistically significant increase of the anti-inflammatory and decrease of pro-inflammatory cytokines as compared to conventional treatment. In addition, there is a positive trend in increase of ALP level, animal weigh, and normalization of ADA activity that can indicate an improvement of kidney state. A significant reduction of the area of specific and interstitial inflammation indicated positive affect of MSC-EVs that suggests a shorter duration of ATT. The number of MSC-EVs proteins (as identified by mass-spectometry analysis) with anti-microbial, anti-inflammatory and immunoregulatory functions reduced the level of the inflammatory response and the severity of kidney damage (further proved by morphometric analysis). In conclusion, MSC-EVs can be a promising tool for the complex treatment of various infectious diseases, in particularly rTB.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Tuberculose Renal , Animais , Coelhos , Tuberculose Renal/metabolismo , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Células-Tronco Mesenquimais/metabolismo
3.
Transl Oncol ; 43: 101909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412663

RESUMO

INTRODUCTION: Escherichia coli l-asparaginase (EcA), an integral part of multi-agent chemotherapy protocols of acute lymphoblastic leukemia (ALL), is constrained by safety concerns and the development of anti-asparaginase antibodies. Novel variants with better pharmacological properties are desirable. METHODS: Thousands of novel EcA variants were constructed using protein engineering approach. After preliminary screening, two mutants, KHY-17 and KHYW-17 were selected for further development. The variants were characterized for asparaginase activity, glutaminase activity, cytotoxicity and antigenicity in vitro. Immunogenicity, pharmacokinetics, safety and efficacy were tested in vivo. Binding of the variants to pre-existing antibodies in primary and relapsed ALL patients' samples was evaluated. RESULTS: Both variants showed similar asparaginase activity but approximately 24-fold reduced glutaminase activity compared to wild-type EcA (WT). Cytotoxicity against Reh cells was significantly higher with the mutants, although not toxic to human PBMCs than WT. The mutants showed approximately 3-fold lower IgG and IgM production compared to WT. Pharmacokinetic study in BALB/c mice showed longer half-life of the mutants (KHY-17- 267.28±9.74; KHYW-17- 167.41±14.4) compared to WT (103.24±18). Single and repeat-doses showed no toxicity up to 2000 IU/kg and 1600 IU/kg respectively. Efficacy in ALL xenograft mouse model showed 80-90 % reduction of leukemic cells with mutants compared to 40 % with WT. Consequently, survival was 90 % in each mutant group compared to 10 % with WT. KHYW-17 showed over 2-fold lower binding to pre-existing anti-asparaginase antibodies from ALL patients treated with l-asparaginase. CONCLUSION: EcA variants demonstrated better pharmacological properties compared to WT that makes them good candidates for further development.

4.
ACS Omega ; 9(2): 2286-2301, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250397

RESUMO

Epidermal growth factor receptor (EGFR)-targeted therapy has been proven vital in the last two decades for the treatment of multiple cancer types, including nonsmall cell lung cancer, glioblastoma, breast cancer and head and neck squamous cell carcinoma. Unfortunately, the majority of approved EGFR inhibitors fall into the drug resistance category because of continuous mutations and acquired resistance. Recently, autophagy has surfaced as one of the emerging underlying mechanisms behind resistance to EGFR-tyrosine kinase inhibitors (TKIs). Previously, we developed a series of 4″-alkyl EGCG (4″-Cn EGCG, n = 6, 8, 10, 12, 14, 16, and 18) derivatives with enhanced anticancer effects and stability. Therefore, the current study hypothesized that 4″-alkyl EGCG might induce cytoprotective autophagy upon EGFR inhibition, and inhibition of autophagy may lead to improved cytotoxicity. In this study, we have observed growth inhibition and caspase-3-dependent apoptosis in 4″-alkyl EGCG derivative-treated glioblastoma cells (U87-MG). We also confirmed that 4″-alkyl EGCG could inhibit EGFR in the cells, as well as mutant L858R/T790M EGFR, through an in vitro kinase assay. Furthermore, we have found that EGFR inhibition with 4″-alkyl EGCG induces cytoprotective autophagic responses, accompanied by the blockage of the AKT/mTOR signaling pathway. In addition, cytotoxicity caused by 4″-C10 EGCG, 4″-C12 EGCG, and 4″-C14 EGCG was significantly increased after the inhibition of autophagy by the pharmacological inhibitor chloroquine. These findings enhance our understanding of the autophagic response toward EGFR inhibitors in glioblastoma cells and suggest a potent combinatorial strategy to increase the therapeutic effectiveness of EGFR-TKIs.

5.
J Mater Chem B ; 11(45): 10929-10940, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37937634

RESUMO

Tuberculosis (TB) remains one of the most infectious pathogens with the highest human mortality and morbidity. Biofilm formation during Mycobacterium tuberculosis (Mtb) infection is responsible for bacterial growth, communication, and, most essentially, increased resistance/tolerance to antibiotics leading to higher bacterial persistence. Thus, biofilm growth is presently considered a key virulence factor in the case of chronic disease. Metal-Organic Frameworks (MOFs) have recently emerged as a highly efficient system to improve existing antibiotics' therapeutic efficacy and reduce adverse effects. In this regard, we have synthesized Cu-MOF (IITI-3) using a solvothermal approach. IITI-3 was well characterized by various spectroscopic techniques. Herein, IITI-3 was first encapsulated with isoniazid (INH) to form INH@IITI-3 with 10 wt% loading within 1 hour. INH@IITI-3 was well characterized by PXRD, TGA, FTIR, and BET surface area analysis. Furthermore, the drug release kinetics studies of INH@IITI-3 have been performed at pH 5.8 and 7.4 to mimic the small intestine and blood pH, respectively. The results show that drug release follows first-order kinetics. Furthermore, the antimycobacterial activity of INH@IITI-3 demonstrated significant bacterial killing and altered the structural morphology of the bacteria. Moreover, INH@IITI-3 was able to inhibit the mycobacterial biofilm formation upon treatment and showed less cytotoxicity toward the murine RAW264.7 macrophages. Thus, this work significantly opens up new possibilities for the applications of INH@IITI-3 in biofilm infections in Mtb and further contributes to TB therapeutics.


Assuntos
Estruturas Metalorgânicas , Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Isoniazida/química , Antituberculosos/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
6.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188967, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657684

RESUMO

Epidermal growth factor receptor (EGFR) actively involves in modulation of various cancer progression related mechanisms including angiogenesis, differentiation and migration. Therefore, targeting EGFR has surfaced as a prominent approach for the treatment of several types of cancers, including non-small cell lung cancer (NSCLC), pancreatic cancer, glioblastoma. Various first, second and third generation of EGFR tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated effectiveness as an anti-cancer therapeutics. However, rapid development of drug resistance and mutations still remains a major challenge for the EGFR-TKIs therapy. Overcoming from intrinsic and acquired resistance caused by EGFR mutations warrants the further exploration of alternative strategies and discovery of novel inhibitors. In this review, we delve into the breakthrough discoveries have been made in previous 20 years, and discuss the currently ongoing efforts aimed to circumvent the chemo-resistance. We also highlight the new challenges, limitations and future directions for the development of improved therapeutic approaches such as fourth-generation EGFR-TKIs, peptides, nanobodies, PROTACs etc.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética
7.
ACS Appl Mater Interfaces ; 15(37): 43345-43358, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37658475

RESUMO

The current study paves the way for improved chemotherapy by creating pH-responsive nanogels (NGs) (GC1 and GC2) loaded with synthetic ruthenium(II) arene complexes to increase biological potency. NGs are fabricated by the conjugation of chitosan (CTS)-biotin biopolymers that selectively target the cancer cells as CTS has the pH-responsive property, which helps in releasing the drug in cancer cells having pH ∼ 5.5, and biotin provides the way to target the cancer cells selectively due to the overexpression of integrin. The synthesized compounds and NGs were thoroughly characterized using various spectroscopic and analytical techniques such as NMR, electrospray ionization-mass spectrometry, Fourier transform infrared, UV-vis, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, rheology, Brunauer-Emmett-Teller, and others. NGs displayed exceptional increased efficacy toward cancerous cells with IC50 values ranging from 7.50 to 18.86 µM via induced apoptosis in three human cancer cell lines. Apart from its potency, NGs were found to be highly selective toward cancer cells. Moreover, based on the results of immunoblot analysis, it was observed that the synthesized compounds exhibit a significant increase in the expression of cleaved caspase-3 and a decrease in the expression of the antiapoptotic protein BCL-XL. Interestingly, the complexes were discovered to have the additional capability of catalyzing the conversion of NADH to NAD+, leading to the generation of radical oxygen species within the cells. Additionally, it was discovered that NG-induced apoptosis depends on ROS production and DNA binding. A narrower range of LD50 values (1185.93 and 823.03 µM) was seen after administering NGs to zebrafish embryos in vivo. The results support the use of drug-loaded NGs as potential chemotherapeutic and chemopreventive agents for human cancer cells.


Assuntos
Quitosana , Neoplasias , Humanos , Animais , Biotina , Nanogéis , Peixe-Zebra , Glucose , Concentração de Íons de Hidrogênio
8.
J Cell Commun Signal ; 17(4): 1249-1282, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37490191

RESUMO

Breast cancer (BC) emerged as one of the life-threatening diseases among females. Despite notable improvements made in cancer detection and treatment worldwide, according to GLOBACAN 2020, BC is the fifth leading cancer, with an estimated 1 in 6 cancer deaths, in a majority of countries. However, the exact cause that leads to BC progression still needs to be determined. Here, we reviewed the role of two novel biomarkers responsible for 50-70% of BC progression. The first one is epidermal growth factor receptor (EGFR) which belongs to the ErbB tyrosine kinases family, signalling pathways associated with it play a significant role in regulating cell proliferation and division. Another one is fatty acid synthase (FASN), a key enzyme responsible for the de novo lipid synthesis required for cancer cell development. This review presents a rationale for the EGFR-mediated pathways, their interaction with FASN, communion of these two biomarkers with BC, and improvements to overcome drug resistance caused by them.

9.
ACS Appl Bio Mater ; 6(7): 2760-2770, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37366546

RESUMO

The synthesis of smart hybrid material to assimilate diagnosis and treatment is crucial in nanomedicine. Herein, we present a simple and facile method to synthesize multitalented blue-emissive nitrogen-doped carbon dots N@PEGCDs. The as-prepared carbon dots N@PEGCDs show enhanced biocompatibility, small size, high fluorescence, and high quantum yield. The N@PEGCDs are used as a drug carrier for 5-fluorouracil (5-FU) with more release at acidic pH. Furthermore, the mode of action of drug-loaded CD (5FU-N@PEGCDs) has also been explored by performing wound healing assay, DCFDA assay for ROS generation, and Hoechst staining. The drug loaded with carbon dots showed less toxicity to normal cells compared to cancer cells, making it a perfect candidate to be studied for designing next-generation drug delivery systems.


Assuntos
Fluoruracila , Pontos Quânticos , Fluoruracila/farmacologia , Carbono , Portadores de Fármacos , Concentração de Íons de Hidrogênio
10.
Dalton Trans ; 52(21): 7104-7118, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37158792

RESUMO

Recently in the field of chemotherapeutics, to combat the side effects of cisplatin, ruthenium complexes have been investigated extensively. In this work, a bidentate benzimidazole-based ligand, HL [HL = 2-(1H-benzo[d]imidazol-2-yl)-6-methoxyphenol], was utilized to obtain three Ru(II) arene complexes having a generalized formula [Ru(η6-p-cym)(L)(X)] or [Ru(η6-p-cym)(L)(X)]+ (where p-cym = p-cymene). The co-ligand X (X = (i) Cl, (ii) PPh3 = triphenyl phosphine, and (iii) PTA = 1,3,5-triaza-7-phosphaadamantane) was varied in order to study the effect it has on the antitumor activity of the compounds. The synthesized compounds were thoroughly characterized using different analytical techniques, including ESI-MS, NMR, FTIR, UV-Vis, and fluorescence spectroscopy. A fluorescence quenching experiment with serum albumin proteins revealed good interactions between the complexes and HSA and BSA. An analysis of their lipophilic character via the shake flask method and a stability study using UV spectroscopy were conducted as well. The anticancer properties of the synthesized compounds were further explored by conducting a DNA binding study using absorption spectroscopy and fluorometric titration with DAPI to check the mode of binding with DNA. Interestingly, the complexes were also found to catalyze the oxidation of NADH to NAD+, giving rise to radical species in the cells. An immunoblot analysis strongly suggested that all three complexes can remarkably upregulate the expression of cleaved caspase-3 and downregulate the expression of the anti-apoptotic protein BCLXL. It is important to note that such studies are yet to be reported for similar benzimidazole-based ruthenium complexes and therefore present a new direction for the investigation of antitumor ruthenium-based metallodrugs. Furthermore, Hoechst and AO/EtBr staining was used to analyze the morphological changes of the compound-treated cancer cells due to apoptosis, which was also confirmed by the IC50 values obtained from the colorimetric assay (MTT) against different cancer cell lines.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Ligantes , Rutênio/farmacologia , Rutênio/química , DNA/química , Benzimidazóis/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo
11.
Microbiol Res ; 273: 127400, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196490

RESUMO

Being among the top 10 causes of adult deaths, tuberculosis (TB) disease is considered a major global public health concern to address. The human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb), is an extremely competent and well-versed pathogen that promotes pathogenesis by evading the host immune systems through numerous tactics. Investigations revealed that Mtb could evade the host defense mechanisms by reconfiguring the host gene transcription and causing epigenetic changes. Although results indicate the link between epigenetics and disease manifestation in other bacterial infections, little is known regarding the kinetics of the epigenetic alterations in mycobacterial infection. This literature review discusses the studies in Mtb-induced epigenetic alterations inside the host and its contribution in the host immune evasion strategies. It also discusses how the Mtb-induced alterations could be used as 'epibiomarkers' to diagnose TB. Additionally, this review also discusses therapeutic interventions to be enhanced through remodification by 'epidrugs'.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Evasão da Resposta Imune , Epigênese Genética , Interações Hospedeiro-Patógeno/genética
12.
Methods Mol Biol ; 2643: 123-134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952182

RESUMO

Peroxisomes are ubiquitous organelles with essential roles in lipid and reactive oxygen species (ROS) metabolism. They are involved in modulating the immune responses during microbial infection, thus having major impact on several bacterial and viral infectious diseases including tuberculosis. Intracellular pathogens such as Mycobacterium tuberculosis (M. tb) employ various strategies to suppress the host oxidative stress mechanisms to avoid killing by the host. Peroxisome-mediated ROS balance is crucial for innate immune responses to M. tb. Therefore, peroxisomes represent promising targets for host-directed therapeutics to tuberculosis. Here, we present protocols used in our laboratory for the culture of M. tb and detection of peroxisomal proteins in M. tb infected macrophages.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Mycobacterium tuberculosis/metabolismo , Macrófagos/metabolismo , Imunidade Inata
13.
Metabolites ; 12(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36355147

RESUMO

The gut-brain axis is a bidirectional communication network connecting the gastrointestinal tract and central nervous system. The axis keeps track of gastrointestinal activities and integrates them to connect gut health to higher cognitive parts of the brain. Disruption in this connection may facilitate various neurological and gastrointestinal problems. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Misfolded protein aggregates that cause cellular toxicity and that aid in the collapse of cellular proteostasis are a defining characteristic of neurodegenerative proteinopathies. These disorders are not only caused by changes in the neural compartment but also due to other factors of non-neural origin. Mounting data reveal that the majority of gastrointestinal (GI) physiologies and mechanics are governed by the central nervous system (CNS). Furthermore, the gut microbiota plays a critical role in the regulation and physiological function of the brain, although the mechanism involved has not yet been fully interpreted. One of the emerging explanations of the start and progression of many neurodegenerative illnesses is dysbiosis of the gut microbial makeup. The present understanding of the literature surrounding the relationship between intestinal dysbiosis and the emergence of certain neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, is the main emphasis of this review. The potential entry pathway of the pathogen-associated secretions and toxins into the CNS compartment has been explored in this article at the outset of neuropathology. We have also included the possible mechanism of undelaying the synergistic effect of infections, their metabolites, and other interactions based on the current understanding.

14.
Microbiol Res ; 264: 127153, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35994955

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the most grievous infectious diseases with long-term morbidity and unpredicted mortality rates globally. Thus, understanding the host-pathogen interactions to develop potential drugs is the most focused area of research. Mtb has many antigens communicating with host cells via various pattern recognition receptors (PRRs). From which, toll-like receptors-2 and 4 (TLR2 and 4) are two major PRRs that provide the primary immune response to Mtb infection of the respiratory tract. As a result, the TLR-mycobacterium antigen interaction triggers a variety of crucial innate immune signalling mechanisms such as phagosome maturation, oxidative stress, elicitation of cell deaths, production of proinflammatory cytokines, and eventually associates with the adaptive immune response to establish infection. Despite the extensive investigations on TLR2 and 4 Mtb ligands that have a significant role in the immune defence system, there are still many unsolved concerns driving researchers to explore the obscures. This review focuses on the host immune modulation due to Mtb-TLR2 and 4 ligand interaction. Subsequently, the host TLR2 and 4 immune signals in cooperation with other PRRs and successive cytokine expressions are discussed. Also highlighted are some recent findings on host-directed therapy related to TLRs that aid in developing novel immunotherapeutic prospects for the better control of Mtb infection.


Assuntos
Mycobacterium tuberculosis , Receptor 2 Toll-Like , Citocinas , Humanos , Imunidade Inata , Ligantes , Mycobacterium tuberculosis/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like
15.
RSC Adv ; 12(28): 17821-17836, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35765335

RESUMO

Herein, we report the discovery of a novel long-chain ether derivative of (-)-epigallocatechin-3-gallate (EGCG), a major green tea polyphenol as a potent EGFR inhibitor. A series of 4''-alkyl EGCG derivatives have been synthesized via regio-selectively alkylating the 4'' hydroxyl group in the D-ring of EGCG and tested for their antiproliferative activities against high (A431), moderate (HeLa), and low (MCF-7) EGFR-expressing cancer cell lines. The most potent compound, 4''-C14 EGCG showed the lowest IC50 values across all the tested cell lines. 4''-C14 EGCG was also found to be significantly more stable than EGCG under physiological conditions (PBS at pH 7.4). Further western blot analysis and imaging data revealed that 4''-C14 EGCG induced cell death in A431 cells with shrunken nuclei, nuclear fragmentation, membrane blebbing, and increased population of apoptotic cells where BAX upregulation and BCLXL downregulation were observed. In addition, autophosphorylation of EGFR and its downstream signalling proteins Akt and ERK were markedly inhibited by 4''-C14 EGCG. MD simulation and the MM/PBSA analysis disclosed the binding mode of 4''-C14 EGCG in the ATP-binding site of EGFR kinase domain. Taken together, our findings demonstrate that 4''-C14 EGCG can act as a promising potent EGFR inhibitor with enhanced stability.

16.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269727

RESUMO

Mycobacterium tuberculosis (Mtb) inhibits host oxidative stress responses facilitating its survival in macrophages; however, the underlying molecular mechanisms are poorly understood. Here, we identified a Mtb acetyltransferase (Rv3034c) as a novel counter actor of macrophage oxidative stress responses by inducing peroxisome formation. An inducible Rv3034c deletion mutant of Mtb failed to induce peroxisome biogenesis, expression of the peroxisomal ß-oxidation pathway intermediates (ACOX1, ACAA1, MFP2) in macrophages, resulting in reduced intracellular survival compared to the parental strain. This reduced virulence phenotype was rescued by repletion of Rv3034c. Peroxisome induction depended on the interaction between Rv3034c and the macrophage mannose receptor (MR). Interaction between Rv3034c and MR induced expression of the peroxisomal biogenesis proteins PEX5p, PEX13p, PEX14p, PEX11ß, PEX19p, the peroxisomal membrane lipid transporter ABCD3, and catalase. Expression of PEX14p and ABCD3 was also enhanced in lungs from Mtb aerosol-infected mice. This is the first report that peroxisome-mediated control of ROS balance is essential for innate immune responses to Mtb but can be counteracted by the mycobacterial acetyltransferase Rv3034c. Thus, peroxisomes represent interesting targets for host-directed therapeutics to tuberculosis.


Assuntos
Mycobacterium tuberculosis , Peroxissomos , Acetiltransferases/metabolismo , Animais , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Mycobacterium tuberculosis/metabolismo , Estresse Oxidativo , Peroxissomos/metabolismo
17.
Front Cell Infect Microbiol ; 11: 676456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381738

RESUMO

Mycobacterium tuberculosis (Mtb) inhibits autophagy to promote its survival in host cells. However, the molecular mechanisms by which Mtb inhibits autophagy are poorly understood. Here, we report a previously unknown mechanism in which Mtb phosphoribosyltransferase (MtbPRT) inhibits autophagy in an mTOR, negative regulator of autophagy, independent manner by inducing histone hypermethylation (H3K9me2/3) at the Atg5 and Atg7 promoters by activating p38-MAPK- and EHMT2 methyltransferase-dependent signaling pathways. Additionally, we find that MtbPRT induces EZH2 methyltransferase-dependent H3K27me3 hypermethylation and reduces histone acetylation modifications (H3K9ac and H3K27ac) by upregulating histone deacetylase 3 to inhibit autophagy. In summary, this is the first demonstration that Mtb inhibits autophagy by inducing histone hypermethylation in autophagy-related genes to promote intracellular bacterial survival.


Assuntos
Histonas , Macrófagos/microbiologia , Mycobacterium tuberculosis , Pentosiltransferases/metabolismo , Autofagia , Histonas/metabolismo , Macrófagos/metabolismo , Metilação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Transdução de Sinais
18.
Front Cardiovasc Med ; 8: 649512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912600

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.

19.
Comput Biol Med ; 130: 104203, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450502

RESUMO

Due to several limitations of the only available BCG vaccine, to generate adequate protective immune responses, it is important to develop potent and cost-effective vaccines against tuberculosis (TB). In this study, we have used an immune-informatics approach to identify potential peptide based vaccine targets against TB. The proteome of Mycobacterium tuberculosis (Mtb), the causative agent of TB, was analyzed for secretory or surface localized antigenic proteins as potential vaccine candidates. The T- and B-cell epitopes as well as MHC molecule binding efficiency were identified and mapped in the modelled structures of the selected proteins. Based on antigenicity score and molecular dynamic simulation (MD) studies two peptides namely Pep-9 and Pep-15 were analyzed, modelled and docked with MHC-I and MHC-II structures. Both peptides exhibited no cytotoxicity and were able to induce proinflammatory cytokine secretion in stimulated macrophages. The molecular docking, MD and in-vitro studies of the predicted B and T-cell epitopes of Pep-9 and Pep-15 peptides with the modelled MHC structures exhibited strong binding affinity and antigenic properties, suggesting that the complex is stable, and that these peptides can be considered as a potential candidates for the development of vaccine against TB.


Assuntos
Mycobacterium tuberculosis , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe II , Simulação de Acoplamento Molecular , Peptídeos
20.
Mol Immunol ; 130: 133-141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33419561

RESUMO

Mycobacterium tuberculosis (Mtb) employs distinct strategies to circumvent host immune responses during the infection process. Various Mtb cell-wall associated and secretory proteins are known to play a critical role in the orchestration of host innate immune responses through modulation of signaling pathways. Mtb genome encodes for 23 (EsxA-EsxW) proteins belonging to the ESAT-6 like family; however, most of them are functionally unknown. Here, we show that Mtb EsxL induces tumor necrosis factor-alpha (TNF-α) production by activating nuclear translocation of nuclear factor-κB (NF-κB) via interaction with Toll-like Receptor 2 (TLR2). Blocking or silencing of TLR2 abrogated nuclear translocation of NF-kB and TNF-α production. Treatment with recombinant purified EsxL (rEsxL) activated mitogen-activated protein kinase (MAPK) pathway by inducing the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase (p38) pathways. At the same time, inhibition of ERK and p38 down-regulated the expression of TNF-α in rEsxL exposed murine macrophages. Besides TNF-α, EsxL also induced the production of IL-6 proinflammatory cytokine. Taken together, these results suggest that EsxL is able to induce TNF-α secretion via TLR2 through activation of NF-κB and MAPK signaling. This study will help in deducing therapeutic strategies for better control of the disease.


Assuntos
Proteínas de Bactérias/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Sistemas de Secreção Tipo VII/fisiologia , Animais , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Fosforilação , Células RAW 264.7 , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...