Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
Nature ; 628(8009): 872-877, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570682

RESUMO

Propionic acidaemia is a rare disorder caused by defects in the propionyl-coenzyme A carboxylase α or ß (PCCA or PCCB) subunits that leads to an accumulation of toxic metabolites and to recurrent, life-threatening metabolic decompensation events. Here we report interim analyses of a first-in-human, phase 1/2, open-label, dose-optimization study and an extension study evaluating the safety and efficacy of mRNA-3927, a dual mRNA therapy encoding PCCA and PCCB. As of 31 May 2023, 16 participants were enrolled across 5 dose cohorts. Twelve of the 16 participants completed the dose-optimization study and enrolled in the extension study. A total of 346 intravenous doses of mRNA-3927 were administered over a total of 15.69 person-years of treatment. No dose-limiting toxicities occurred. Treatment-emergent adverse events were reported in 15 out of the 16 (93.8%) participants. Preliminary analysis suggests an increase in the exposure to mRNA-3927 with dose escalation, and a 70% reduction in the risk of metabolic decompensation events among 8 participants who reported them in the 12-month pretreatment period.


Assuntos
Acidemia Propiônica , Propionil-Coenzima A Carboxilase , RNA Mensageiro , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Administração Intravenosa , Relação Dose-Resposta a Droga , Acidemia Propiônica/genética , Acidemia Propiônica/terapia , Propionil-Coenzima A Carboxilase/genética , Propionil-Coenzima A Carboxilase/metabolismo , RNA Mensageiro/administração & dosagem , RNA Mensageiro/efeitos adversos , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico
5.
Nat Genet ; 56(4): 585-594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553553

RESUMO

We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.


Assuntos
Paralisia Cerebral , Variações do Número de Cópias de DNA , Humanos , Criança , Variações do Número de Cópias de DNA/genética , Paralisia Cerebral/genética , Mutação , Sequenciamento Completo do Genoma , Genômica
6.
Cell Host Microbe ; 32(3): 382-395.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309259

RESUMO

Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine ß-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.


Assuntos
Homocistinúria , Metionina , Humanos , Camundongos , Animais , Metionina/metabolismo , Metionina/uso terapêutico , Voluntários Saudáveis , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Animais de Doenças , Homocistinúria/tratamento farmacológico , Homocistinúria/metabolismo , Racemetionina , Homocisteína/uso terapêutico
7.
BMC Pediatr ; 24(1): 37, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216926

RESUMO

BACKGROUND: Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits. METHODS: We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death. RESULTS: The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3-3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9-1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients' metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated. CONCLUSIONS: Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.


Assuntos
Erros Inatos do Metabolismo Lipídico , Avaliação de Resultados em Cuidados de Saúde , Criança , Humanos , Acil-CoA Desidrogenase , Canadá , Estudos Prospectivos , Pré-Escolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA