Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Adv ; 6(35): eabb3348, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923638

RESUMO

The lack of a scalable nanoparticle-based computing architecture severely limits the potential and use of nanoparticles for manipulating and processing information with molecular computing schemes. Inspired by the von Neumann architecture (VNA), in which multiple programs can be operated without restructuring the computer, we realized the nanoparticle-based VNA (NVNA) on a lipid chip for multiple executions of arbitrary molecular logic operations in the single chip without refabrication. In this system, nanoparticles on a lipid chip function as the hardware that features memory, processors, and output units, and DNA strands are used as the software to provide molecular instructions for the facile programming of logic circuits. NVNA enables a group of nanoparticles to form a feed-forward neural network, a perceptron, which implements functionally complete Boolean logic operations, and provides a programmable, resettable, scalable computing architecture and circuit board to form nanoparticle neural networks and make logical decisions.

2.
Mater Sci Eng C Mater Biol Appl ; 109: 110480, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228926

RESUMO

Microspheres are beneficial for filling defects of various shapes and provide a large surface area for cell attachment. Porous microspheres have attracted particular attention because they can deliver cells and bioactive molecules such as growth factors. In this study, BCP-collagen composite microspheres were developed for growth factor delivery in bone regeneration. Firstly, porous biphasic calcium phosphate (BCP) microspheres were fabricated by applying a water-in-oil emulsion technique using camphene as a pore generator. Then, porous BCP-collagen composite microspheres were fabricated by repetitively dip coating the microspheres in a collagen solution to effectively deliver growth factor to bone defects. Characterization of the microspheres and in vitro studies were conducted to investigate the effect of collagen infiltration on bone regeneration. In addition, in vitro evaluation demonstrated the sustained bone morphogenetic protein-2 (BMP-2) delivery of the microspheres and the effect of cell differentiation, and in vivo assessment with rabbits revealed that the microspheres filled the defect well and that bone could be regenerated through the microspheres. Moreover, the composite system was more effective for bone regeneration than the bare BCP microspheres because of the drug retention of collagen. These findings indicate that the porous microspheres are effective for tissue regeneration by continuous growth factor delivery.


Assuntos
Fosfatos de Cálcio/química , Microesferas , Alicerces Teciduais/química , Animais , Proteína Morfogenética Óssea 2/química , Regeneração Óssea/fisiologia , Masculino , Osteogênese/fisiologia , Polímeros/química , Porosidade , Coelhos
3.
Biomater Sci ; 7(7): 2907-2919, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31089612

RESUMO

Although the design of more biocompatible polymeric implants has been studied for decades, their intended functionality continues to be impaired by the response of the host tissue to foreign bodies at the tissue-implant interface. In particular, the formation and contracture of fibrous capsules prevent the intimate integration of an implant with surrounding tissues, which leads to structural deformation of the implants and persistent discomfort and pain. We report a new surface nano-engineered silicone implant that reduces fibrous capsule formation and improves the biocompatibility of it via sputtering-based plasma immersion ion implantation (S-PIII). This technique can introduce biologically compatible tantalum (Ta) on the silicone surface to produce a Ta-implanted skin layer (<60 nm thick) as well as generate either smooth (Smooth/Ta silicone) or nano-textured (Nano/Ta silicone) surface morphologies. The biologically inert chemical structure and strong hydrophobic surface characteristics of bare silicone are substantially ameliorated after Ta ion implantation. In particular, the Nano/Ta silicone implant's combination of surface nano-texturing as a physical cue and the Ta-implanted layer as a chemical cue was found to be very effective at achieving outstanding hydrophilicity and fibroblast affinity compared to the bare and Smooth/Ta silicone implants. In a mouse in vivo study conducted for 8 weeks, the Nano/Ta silicone implant inhibited fibrous capsule formation and contracture on its surface better than the bare silicone based on an analysis of the number of macrophages, myofibroblast differentiation and activation, collagen density, and thickness of fibrous capsules.


Assuntos
Engenharia , Nanotecnologia , Próteses e Implantes , Silicones/química , Tantálio/química , Animais , Fibroblastos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fenômenos Mecânicos , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Silicones/farmacologia , Propriedades de Superfície
4.
Colloids Surf B Biointerfaces ; 179: 405-413, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30999119

RESUMO

The surface characteristics of coronary stents play a pivotal role in inhibiting in-stent restenosis and late-stent thrombosis. In this study, a sol-gel-derived silica xerogel-chitosan hybrid coating was applied to Co-Cr stent and was reported, for the first time, as a biocompatible drug delivery tool in vascular stent application. A dense and uniform chitosan-silica xerogel hybrid coating (<1-µm thick) was applied on bare Co-Cr material. Sirolimus was well incorporated into the hybrid coatings without re-crystallization. The chitosan-silica hybrid coating with 30 wt% silica xerogel showed better mechanical stability and good adhesive strength without any cracking or delamination. The chitosan-silica hybrid coated Co-Cr surface exhibited significantly improved wettability and corrosion resistance compared to the chitosan coated Co-Cr surface. In addition, the hybrid coating layer enabled efficient loading of sirolimus, owing to the unique mesoporous structure of silica xerogel, which further allowed the sustained release of sirolimus over 3 weeks. In-vitro tests with human umbilical cord vein endothelial cells and blood platelets confirmed that the chitosan-silica hybrid coating had excellent cytocompatibility and hemocompatibilty. Thus, this study demonstrated that the chitosan-silica hybrid material is a promising material for coating coronary stents, with minimal risk of in-stent restenosis and thrombogenicity.


Assuntos
Materiais Revestidos Biocompatíveis/química , Stents Farmacológicos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Compostos Inorgânicos/química , Teste de Materiais , Compostos Orgânicos/química , Sirolimo/farmacologia , Quitosana/química , Humanos , Adesividade Plaquetária/efeitos dos fármacos , Dióxido de Silício/química , Molhabilidade
5.
ACS Appl Mater Interfaces ; 11(11): 10492-10504, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30802030

RESUMO

Poly(lactic acid) (PLA) is the most utilized biodegradable polymer in orthopedic implant applications because of its ability to replace regenerated bone tissue via continuous degradation over time. However, the poor osteoblast affinity for PLA results in a high risk of early implant failure, and this issue remains one of the most difficult challenges with this technology. In this study, we demonstrate the use of a new technique in which plasma immersion ion implantation (PIII) is combined with a conventional DC magnetron sputtering. This technique, referred to as sputtering-based PIII (S-PIII), makes it possible to produce a tantalum (Ta)-implanted PLA surface within 30 s without any tangible degradation or deformation of the PLA substrate. Compared to a Ta-coated PLA surface, the Ta-implanted PLA showed twice the surface roughness and substantially enhanced adhesion stability in dry and wet conditions. The strong hydrophobic surface properties and biologically relatively inert chemical structure of PLA were ameliorated by Ta S-PIII treatment, which produced a moderate hydrophilic surface and enhanced cell-material interactions. Furthermore, in an in vivo evaluation in a rabbit distal femur implantation model, Ta-implanted PLA demonstrated significantly enhanced osseointegration and osteogenesis compared with bare PLA. These results indicate that the Ta-implanted PLA has great potential for orthopedic implant applications.


Assuntos
Poliésteres/química , Tantálio/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Fêmur/diagnóstico por imagem , Fêmur/patologia , Íons/química , Camundongos , Osseointegração/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Coelhos , Propriedades de Superfície , Molhabilidade , Microtomografia por Raio-X
6.
Int J Biol Macromol ; 123: 866-877, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30447366

RESUMO

The creation of a moist environment and promotion of cell proliferation and migration together with antibacterial property are critical to the wound-healing process. Alginate (Alg) is an excellent candidate for injectable wound dressing materials because it can form a gel in a mild environment. Taking advantage of its gelation property, an injectable nano composite hydrogel containing nano-sized (about 90 nm) calcium fluoride (CaF2) particles was developed using in-situ precipitation process. The amount of released fluorine (F-) ion from the nanocomposite hydrogel increased with increasing CaF2 content inside the composite hydrogel and the ions stimulated both the proliferation and migration of fibroblast cells in vitro. The antibacterial property of the composite hydrogel against E. coli and S. aureus was confirmed through colony formation test where the number of bacterial colonies significantly decreased compared to Alg hydrogel. The in vivo results based on a full-thickness wound model showed that the nanocomposite hydrogel effectively enhanced the deposition of the extracellular matrix compared to that of the Alg hydrogel. This study demonstrates the potential of this nanocomposite hydrogel as a bioactive injectable wound-dressing material with the ability to inhibit bacterial growth and stimulate cell proliferation and migration for accelerated wound healing.


Assuntos
Alginatos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Flúor/farmacologia , Hidrogéis/química , Injeções , Nanocompostos/química , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Precipitação Química , Reagentes de Ligações Cruzadas/química , Escherichia coli/efeitos dos fármacos , Inflamação/patologia , Íons , Masculino , Camundongos , Nanocompostos/ultraestrutura , Ratos Sprague-Dawley , Reologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Difração de Raios X
7.
J Biomater Appl ; 33(7): 955-966, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30537892

RESUMO

Thiolated biodegradable polyurethane (TG-DPU) was synthesized using a one-pot reaction with thioglycerol adopted as a functionalized chain extender. After characterization of the chemical structure of TG-DPU using proton nuclear magnetic resonance spectroscopy, bone morphogenetic protein (BMP-2) was loaded in the TG-DPU under oxidative conditions to form disulfides between the free thiol of TG-DPU and BMP-2. The interaction between TG-DPU and BMP-2, so-called bioconjugates, was investigated using X-ray photoelectron spectroscopy analysis; the appearance of disulfide (S-S) linkage indicated the formation of a polymer/growth factor conjugate system. The covalently linked bioconjugates provided stability with minimal loss during the drug delivery with prolonged release performance in in vitro release tests. The effects of the drugs delivered by TG-DPU were also confirmed by in vitro alkaline phosphatase tests using pre-osteoblasts and in vivo bone regeneration tests. The drugs effectively induced cell differentiation and promoted mature bone recovery.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Regeneração Óssea/efeitos dos fármacos , Preparações de Ação Retardada/química , Glicerol/análogos & derivados , Poliuretanos/química , Animais , Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/farmacologia , Linhagem Celular , Glicerol/química , Camundongos , Osteogênese/efeitos dos fármacos , Porosidade , Coelhos , Nanomedicina Teranóstica , Engenharia Tecidual
8.
Adv Exp Med Biol ; 1077: 527-537, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357707

RESUMO

Wound healing is a complex mechanism involving a variety of factors and is a representative process of tissue growth and regeneration in our body. Surface-based interactions between the dressing material and the wound may significantly influence the healing phase. Advances in understanding the mechanism of wound healing have led to the development of numerous dressing materials that can accelerate the healing process. However, these materials have a passive role in wound healing. It is therefore necessary to develop novel wound dressing materials, especially effective for clinically problematic wounds. Chitosan-based dressing materials are considered suitable for clinically problematic wounds as they exhibit several characteristic features, such as facilitating hemostasis, enhanced wound healing during the inflammatory and proliferative phases, antimicrobial effect, etc. Here, we review the current status of clinically available dressing materials and studies on the biological characteristics of chitosan, and discuss the potential applications of chitosan in multi-functional dressing materials for accelarated wound healing.


Assuntos
Bandagens , Quitosana , Cicatrização , Materiais Biocompatíveis , Hemostasia , Humanos
9.
J Biomater Appl ; 32(8): 1011-1023, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29357774

RESUMO

In this study, we evaluated the surface characterization of a novel chitosan-silica hybridized membrane and highlighted the substantial role of silica in the wound environment. The chemical coupling of chitosan and silica resulted in a more condensed network compared with pure chitosan, which was eventually able to stably maintain its framework, particularly in the wet state. In addition, we closely observed the wound-healing process along with the surface interaction between chitosan-silica and the wound site using large-surface-area wounds in a porcine model. Our evidence indicates that chitosan-silica exerts a synergetic effect of both materials to promote a remarkable wound-healing process. In particular, the silica in chitosan-silica accelerated wound closure including wound contraction, and re-epithelialization via enhancement of cell recruitment, epidermal maturity, neovascularization, and granulation tissue formation compared with pure chitosan and other commercial dressing materials. This advanced wound dressing material may lead to effective treatment for problematic cutaneous wounds and can be further applied for human skin regeneration.


Assuntos
Bandagens , Materiais Biocompatíveis/uso terapêutico , Quitosana/uso terapêutico , Dióxido de Silício/uso terapêutico , Pele/lesões , Cicatrização , Animais , Materiais Biocompatíveis/química , Proliferação de Células , Quitosana/química , Interações Hidrofóbicas e Hidrofílicas , Masculino , Membranas Artificiais , Neovascularização Fisiológica , Porosidade , Dióxido de Silício/química , Pele/irrigação sanguínea , Pele/patologia , Suínos
10.
ACS Biomater Sci Eng ; 4(7): 2380-2389, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435103

RESUMO

In this study, we report the development of a hyaluronic acid (HA)-based composite hydrogel containing calcium fluoride (CaF2) with good biocompatibility and antibacterial properties for multifunctional wound dressing applications. CaF2 was newly selected for incorporation within HA because it can release both Ca2+ and F- ions, which are well-known ions for affecting cell proliferation and inhibiting bacterial growth, respectively. In particular, an in situ precipitation process enables easy control over the released amount of F- ions by simply adjusting the precursor solutions (calcium chloride (CaCl2) and ammonium fluoride (NH4F)) used for the CaF2 precipitation. CaF2 particles were uniformly embedded within a HA-based pure hydrogel using an in situ precipitation process. Through variation of the CaCl2 and NH4F concentrations used in the precipitation as well as the precipitation time, composite hydrogels with different ion-release profiles were obtained. By controlling the precipitation time, especially for 10 min and after 30 min, large differences in the ion-release profiles as a function of CaF2 concentration were observed. A shorter precipitation time resulted in faster release of fluoride, whereas for the 30 min and 1 h samples, sustained ion release was achieved. Colony tests and live/dead assays using Escherichia coli and Staphylococcus aureus revealed a lower density of bacteria on the CaF2 composite hydrogels than on the pure hydrogel for both strains. In addition, improved cellular responses such as cell attachment and proliferation were also observed for the CaF2 composite hydrogels compared to those for the pure hydrogel. Furthermore, the composite hydrogels exhibited excellent wound healing efficiency, as evidenced by an in vitro cell migration assay. Finally, monitoring of the wound closure changes using a full-thickness wound in a rat model revealed the accelerated wound healing capability of the CaF2 composite hydrogels compared with that of the pure hydrogel. Based on our findings, these CaF2 composite hydrogels show great potential for application as advanced hydrogel wound dressings with antibacterial properties and accelerated wound-healing capabilities.

11.
Adv Healthc Mater ; 6(24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29076295

RESUMO

This study reports the development of a bilayered scaffold with aligned channels produced via a sequential coextrusion and unidirectional freezing process to facilitate upward bone-marrow stem-cell migration. The biomimetic scaffold with collagen and biphasic calcium phosphate (BCP) layers is successfully fabricated with matching of the cartilage and bone layers. The aligned structure results in an enhancement of the compressive strength, and the channels enable tight anchoring of the collagen layers on the BCP scaffolds compared with a randomly structured porous scaffold. An in vitro evaluation demonstrates that the aligned channels guide the cells to attach on the surface in highly stretched shapes and migrate upward faster than the random structure. In addition, in vivo assessment reveals that the aligned channels yield superior osteochondral tissue regeneration compared with the random structure. Moreover, the channel diameter greatly affects the tissue regeneration, and the scaffold with a channel diameter of ≈270 µm exhibits the optimal regeneration because of sufficient nutrient supply and adequate tissue ingrowth. These findings indicate that the introduction of aligned channels to a bilayered scaffold provides an effective approach for osteochondral tissue regeneration.


Assuntos
Regeneração Óssea , Colágeno/química , Hidroxiapatitas/química , Engenharia Tecidual , Alicerces Teciduais , Animais , Biomimética , Cartilagem , Processamento de Imagem Assistida por Computador , Masculino , Porosidade , Coelhos
12.
Mater Sci Eng C Mater Biol Appl ; 79: 866-874, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629091

RESUMO

Polyurethane (PU)-based dressing foams have been widely used due to their excellent water absorption capability, optimal mechanical properties, and unequaled economic advantage. However, the low bioactivity and poor healing capability of PU limit the applications of PU dressings in complex wound healing cases. To resolve this problem, this study was carried out the hybridization of bioactive silica nanoparticles with PU through a one-step foaming reaction that is coupled with the sol-gel process. The hybridization with silica did not affect the intrinsically porous microstructure of PU foams with silica contents of up to 10wt% and where 5-60nm silica nanoparticles were well dispersed in the PU matrix, despite slight agglomerations. The incorporated silica enhanced the mechanical performance of PU by proffering better flexibility and durability as well as maintaining good water absorption capabilities and the WVTR characteristics of pure PU foam. The silica of PU-10wt% Si foams was gradually dissolved and released under physiological conditions during a 14-day immersion period. The in vitro cell attachment and proliferation tests showed significant improvements in terms of the biocompatibility of PU-Si hybrid foams and demonstrated the effects of silica on cell growth. More significantly, the superior healing capability of PU-Si as a wound dressing in comparison to PU-treated wounds was verified through in vivo animal tests. Full-thickness wounds treated with PU-Si foams exhibited faster wound closure rates as well as accelerated collagen and elastin fiber regeneration in newly formed dermis, which was ultimately completely covered by a new epithelial layer. It is clear that PU-Si hybrid foams have considerable potential as a wound dressing material geared for accelerated, superior wound healing.


Assuntos
Transição de Fase , Animais , Bandagens , Derme , Poliuretanos , Dióxido de Silício , Cicatrização
13.
Acta Pharmacol Sin ; 38(6): 848-858, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28414203

RESUMO

Since the discovery that nano-scaled particulates can easily be incorporated into tumors via the enhanced permeability and retention (EPR) effect, such nanostructures have been exploited as therapeutic small molecule delivery systems. However, the convoluted synthetic process of conventional nanostructures has impeded their feasibility and reproducibility in clinical applications. Herein, we report an easily prepared formulation of self-assembled nanostructures for systemic delivery of the anti-cancer drug doxorubicin (DOX). Phenylboronic acid (PBA) was grafted onto the polymeric backbone of poly(maleic anhydride). pPBA-DOX nanocomplexes were prepared by simple mixing, on the basis of the strong interaction between the 1,3-diol of DOX and the PBA moiety on pPBA. Three nanocomplexes (1, 2, 4) were designed on the basis of [PBA]:[DOX] molar ratios of 1:1, 2:1, and 4:1, respectively, to investigate the function of the residual PBA moiety as a targeting ligand. An acid-labile drug release profile was observed, owing to the intrinsic properties of the phenylboronic ester. Moreover, the tumor-targeting ability of the nanocomplexes was demonstrated, both in vitro by confocal microscopy and in vivo by fluorescence imaging, to be driven by an inherent property of the residual PBA. Ligand competition assays with free PBA pre-treatment demonstrated the targeting effect of the residual PBA from the nanocomplexes 2 and 4. Finally, the nanocomplexes 2 and 4, compared with the free DOX, exhibited significantly greater anti-cancer effects in vitro and even in vivo. Our pPBA-DOX nanocomplex enables a new paradigm for self-assembled nanostructures with potential biomedical applications.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Doxorrubicina/farmacologia , Nanoestruturas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Borônicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Polimerização , Relação Estrutura-Atividade
14.
Nanotechnology ; 28(12): 12LT01, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28176676

RESUMO

A flexible thin gas barrier film formed by layer-by-layer (LBL) assembly has been studied. We propose for the first time that hexagonal boron nitride (h-BN) can be used in LBL assembly. When dispersed in water through sonication-assisted hydrolysis, h-BN develops hydroxyl groups that electrostatically couple with the cationic polymer polydiallyldimethylammonium chloride (PDDA). This process produces hydroxyl-functional h-BN/PDDA nanocomposites. The nanocomposites exhibit well exfoliated and highly ordered h-BN nanosheets, which results in an extremely high visual clarity, with an average transmittance of 99% in the visible spectrum. Moreover, well aligned nanocomposites extend gas diffusion path that reduce water vapor transmission rate to 1.3 × 10-2 g m-2 d-1. The simple and fast LBL process demonstrated here can be applied in many gas barrier applications.

15.
ACS Omega ; 2(3): 981-987, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023624

RESUMO

In this study, glycerol phosphate was introduced into polyurethane (PU) to promote the coating stability of hydroxyapatite (HA) during its mineralization on the PU surface. Glycerol phosphate was successfully conjugated with the PU chain during polymerization. Phosphate groups in glycerol phosphate accelerated the nucleation of HA under calcium phosphate ion-rich conditions (concentrated simulated body fluid), resulting in the enhancement of structural stability. The robust interface between HA and PU also improved mechanical properties. Hydrophilic phosphate groups and bioactive HA improved in vitro cellular responses in terms of the attachment and proliferation of L929 fibroblasts and MC3T3-E1 preosteoblasts. Thus, the highly elastic and bioactive PU-gp-HA could be a promising candidate for tissue engineering applications that experience frequent deformation, including diverse cartilage replacements.

16.
J Biomed Mater Res B Appl Biomater ; 105(7): 1828-1839, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27219872

RESUMO

Commercialized dressing materials with or without silver have played a passive role in early-phase wound healing, protecting the skin defects from infections, absorbing exudate, and preventing dehydration. Chitosan (CTS)-based sponges have been developed in pure or hybrid forms for accelerating wound healing, but their wound-healing capabilities have not been extensively compared with widely used commercial dressing materials, providing limited information in a practical aspect. In this study, we have developed CTS-silica (CTS-Si) hybrid sponges with water absorption, flexibility, and mechanical behavior similar to those of CTS sponges. In vitro and in vivo tests were performed to compare the CTS-Si sponges with three commercial dressing materials [gauze, polyurethane (PU), and silver-containing hydrofiber (HF-Ag)] in addition to CTS sponges. Both in vitro and in vivo tests showed that CTS-Si sponges promoted fibroblast proliferation, leading to accelerated collagen synthesis, whereas the CTS sponges did not exhibit significant differences in fibroblast proliferation and collagen synthesis from gauze, PU, and HF-Ag sponges. In case of CTS-Si, the inflammatory cells were actively recruited to the wound by the influence of the released silicon ions from CTS-Si sponges, which, in return, led to an enhanced secretion of growth factors, particularly TGF-ß during the early stage. The higher level of TGF-ß likely improved the proliferation of fibroblasts, and as a result, collagen synthesis by fibroblasts became remarkably productive, thereby increasing collagen density at the wound site. Therefore, the CTS-Si hybrid sponges have considerable potential as a wound-dressing material for accelerating wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1828-1839, 2017.


Assuntos
Bandagens , Quitosana , Dióxido de Silício , Pele , Cicatrização/efeitos dos fármacos , Animais , Quitosana/química , Quitosana/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Pele/lesões , Pele/metabolismo , Pele/patologia
17.
Pharmazie ; 70(4): 269-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26012258

RESUMO

The present study aimed to examine the effects polysaccharide-rich extract of Acanthopanax senticosus (PEA) on blood alcohol concentration (BAC) and hangover as well as blood lab parameters. A randomized, placebo-controlled, double-blind crossover trial was conducted. The PEA was orally administered before and after consuming alcohol 1.75 g/kg of pure alcohol. After alcohol consumption, BAC was measured for evaluation of alcohol pharmacokinetics. In the second day morning, subjects were asked to complete the Acute Hangover Scale (AHS) questionnarie. BAC results showed little difference between placebo and PEA groups, indicating that PEA does not have an effect on the pharmacokinetics of alcohol. However, several AHS items (i.e., tired, headache, dizziness, stomachache and nausea) and AHS total score were significantly improved by PEA. Blood lab parameters were significantly altered by alcohol in the placebo group. The alteration by alcohol of glucose and C-reactive protein (CRP) level was significantly attenuated by PEA. Therefore, PEA may have potential to reduce the severity of the alcohol hangover by inhibiting the alcohol-induced hypoglycemia and inflammatory response.


Assuntos
Intoxicação Alcoólica/tratamento farmacológico , Eleutherococcus/química , Extratos Vegetais/uso terapêutico , Polissacarídeos/uso terapêutico , Adulto , Intoxicação Alcoólica/psicologia , Depressores do Sistema Nervoso Central/sangue , Estudos Cross-Over , Método Duplo-Cego , Etanol/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
18.
ACS Appl Mater Interfaces ; 7(8): 4778-83, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25668131

RESUMO

Layer-by-layer (LBL) assembly, which uses electronic and ionic intermolecular bonding under nonvacuum conditions, is a promising technology for fabricating gas barrier films owing to its simple processing and easy formation of a multilayer structure. In this research, nanoclay-polymer multilayers of Na(+)-montmorillonite (Na-MMT) were fabricated. Particularly, the addition of AuCl3 on fabricated MMT layers caused a reaction with the surface silanol functional groups (Si-O-H) of the MMT platelets, resulting in the formation of Au2O3 on the MMT-polymer multilayers. The Au2O3 filled the vacancies between the MMT platelets and linked the MMT platelets together, thus forming a gas barrier film that reduced the water vapor transmission rate (WVTR) to 3.2 × 10(-3) g m(-2) day(-1). AuCl3-treated MMT-polymer multilayers thus have the potential to be utilized for manufacturing gas barrier films for flexible electronics on a large scale.

19.
Biomacromolecules ; 15(12): 4410-9, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25319793

RESUMO

Nanoparticle technologies provide a powerful tool for the development of reagents for use in both therapeutic and diagnostic, or "theragnostic" biomedical applications. Two broad classes of particles are under development, viral and synthetic systems, each with their respective strengths and limitations. Here we adapt the phage lambda system to construct modular "designer" nanoparticles that blend these two approaches. We have constructed a variety of modified "decoration" proteins that allow site-specific modification of the shell with both protein and nonproteinaceous ligands including small molecules, carbohydrates, and synthetic display ligands. We show that the chimeric proteins can be used to simultaneously decorate the shell in a tunable surface density to afford particles that are physically homogeneous and that can be manufactured to display a variety of ligands in a defined composition. These designer nanoparticles set the stage for development of lambda as a theragnostic nanoparticle system.


Assuntos
Bacteriófago lambda/química , Proteínas do Capsídeo/química , Capsídeo/química , Glicoproteínas/química , Nanopartículas/química , Nanopartículas/virologia , DNA Viral/química , Ligantes , Plasmídeos/genética
20.
Biomaterials ; 33(28): 6889-97, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22770567

RESUMO

Targeting cell populations via endogenous carbohydrate receptors is an appealing approach for drug delivery. However, to be effective, this strategy requires the production of high affinity carbohydrate ligands capable of engaging with specific cell-surface lectins. To develop materials that exhibit high affinity towards these receptors, we synthesized glycopolymers displaying pendent carbohydrate moieties from carbohydrate-functionalized monomer precursors via reversible addition-fragmentation chain transfer (RAFT) polymerization. These glycopolymers were fluorescently labeled and used to determine macrophage-specific targeting both in vitro and in vivo. Mannose- and N-acetylglucosamine-containing glycopolymers were shown to specifically target mouse bone marrow-derived macrophages (BMDMs) in vitro in a dose-dependent manner as compared to a galactose-containing glycopolymer (30- and 19-fold higher uptake, respectively). In addition, upon macrophage differentiation, the mannose glycopolymer exhibited enhanced uptake in M2-polarized macrophages, an anti-inflammatory macrophage phenotype prevalent in injured tissue. This carbohydrate-specific uptake was retained in vivo, as alveolar macrophages demonstrated 6-fold higher internalization of mannose glycopolymer, as compared to galactose, following intratracheal administration in mice. We have shown the successful synthesis of a class of functional RAFT glycopolymers capable of macrophage-type specific uptake both in vitro and in vivo, with significant implications for the design of future targeted drug delivery systems.


Assuntos
Acetilglucosamina/análogos & derivados , Portadores de Fármacos/administração & dosagem , Macrófagos Alveolares/metabolismo , Manose/análogos & derivados , Receptores de Superfície Celular/metabolismo , Acetilglucosamina/metabolismo , Administração por Inalação , Aglutinação/efeitos dos fármacos , Análise de Variância , Animais , Células Cultivadas , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Maleimidas/química , Manose/metabolismo , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Polimetacrílicos/administração & dosagem , Ácidos Polimetacrílicos/síntese química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...