Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063727

RESUMO

Large forgings are crucial in aerospace applications; however, the residual stresses generated during their forming and heat treatment seriously affect their serviceability. Therefore, the non-destructive detection of residual stresses in large forgings is of far-reaching significance for ensuring the quality of forgings and realising precision machining. Although a variety of detection methods are available, there is still a lack of a programme that can comprehensively, accurately and non-destructively measure the residual stresses in large forgings. This study is dedicated to exploring the application of the bouncing impact indentation method in the non-destructive testing of residual stresses in large forgings. Through in-depth finite element simulations and orthogonal scheme analyses, we found that the elastic modulus, yield strength and work hardening indexes have significant effects on the impact indentation process. Further, we establish the dimensionless function of residual stress and indentation parameters, and successfully obtain the inversion algorithm of residual stress. The relative error of the calculated values of the indentation curves hm and hr in the simulation with reference values is not more than 3%, and the relative error of the corrected Pm inversion values for most virtual materials is not more than 5%. The folding elastic modulus and apparent elastic modulus obtained by inversion are controlled within 10%, which demonstrates a high value for engineering applications. In addition, we innovatively express the research results in the form of 3D stress diagrams, realising the digital expression of 3D residual stresses in large forgings based on feature point measurements and contour surface configurations, which provides intuitive and comprehensive data support for engineering practice.

2.
Materials (Basel) ; 16(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048963

RESUMO

Deformation instability is a macroscopic and microscopic phenomenon of non-uniformity and unstable deformation of materials under stress loading conditions, and it is affected by the intrinsic characteristics of materials, the structural geometry of materials, stress state and environmental conditions. Whether deformation instability is positive and constructive or negative and destructive, it objectively affects daily life at all times and the deformation instability based on metal-bearing analysis in engineering design has always been the focus of attention. Currently, the literature on deformation instability in review papers mainly focuses on the theoretical analysis of deformation instability (instability criteria). However, there are a limited number of papers that comprehensively classify and review the subject from the perspectives of material characteristic response, geometric structure response, analysis method and engineering application. Therefore, this paper aims to provide a comprehensive review of the existing literature on metal deformation instability, covering its fundamental principles, analytical methods, and engineering practices. The phenomenon and definition of deformation instability, the principle and viewpoint of deformation instability, the theoretical analysis, experimental research and simulation calculation of deformation instability, and the engineering application and prospect of deformation instability are described. This will provide a reference for metal bearing analysis and deformation instability design according to material deformation instability, structural deformation instability and localization conditions of deformation instability, etc. From the perspective of practical engineering applications, regarding the key problems in researching deformation instability, using reverse thinking to deduce and analyze the characteristics of deformation instability is the main trend of future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA