Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36917188

RESUMO

The spatiotemporal pattern of the spread of pathologically modified tau through brain regions in Alzheimer's disease (AD) can be explained by prion-like cell-to-cell seeding and propagation of misfolded tau aggregates. Hence, to develop targeted therapeutic antibodies, it is important to identify the seeding- and propagation-competent tau species. The hexapeptide 275VQIINK280 of tau is a critical region for tau aggregation, and K280 is acetylated in various tauopathies, including AD. However, the mechanism that links tau acetylated on lysine 280 (tau-acK280) to subsequent progression to neurodegenerative disease remains unclear. Here, we demonstrate that tau-acK280 is critical for tau propagation processes including secretion, aggregation, and seeding. We developed an antibody, Y01, that specifically targets tau-acK280 and solved the crystal structure of Y01 in complex with an acK280 peptide. The structure confirmed that Y01 directly recognizes acK280 and the surrounding residues. Strikingly, upon interaction with acetylated tau aggregates, Y01 prevented tauopathy progression and increased neuronal viability in neuron cultures and in tau-Tg mice through antibody-mediated neutralization and phagocytosis, respectively. Based on our observations that tau-acK280 is a core species involved in seeding and propagation activities, the Y01 antibody that specifically recognizes acK280 represents a promising therapeutic candidate for AD and other neurodegenerative diseases associated with tauopathy.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Tauopatias , Camundongos , Animais , Anticorpos Monoclonais/farmacologia , Proteínas tau/genética , Proteínas tau/metabolismo , Lisina , Tauopatias/tratamento farmacológico , Modelos Animais de Doenças , Encéfalo/metabolismo
2.
Neurobiol Dis ; 129: 182-194, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31121321

RESUMO

The link between Val232Met variant of phospholipase D3 (PLD3) and late-onset Alzheimer's disease (AD) is still obscure. While it may not affect directly the amyloid precursor protein function, PLD3 could be regulating multiple cellular compartments. Here, we investigated the function of wild-type human PLD3 (PLD3WT) and the Val232Met variant (PLD3VM) in the presence of ß-amyloid (Aß) in a Drosophila melanogaster model of AD. We expressed PLD3WT in CNS of the Aß-model flies and monitored its effect on the ER stress, cell apoptosis and recovery the Aß-induced cognitive impairment. The expression reduced ER stress and neuronal apoptosis, which resulted in normalized antioxidative phospholipids levels and brain protection. A specific O-glycosylation at pT271 in PLD3 is essential for its normal trafficking and cellular localization. The V232 M substitution impairs this O-glycosylation, leading to enlarged lysosomes and plausibly aberrant protein recycling. PLD3VM was less neuroprotective, and while, PLD3WT expression enhances the lysosomal functions, V232 M attenuated PLD3's trafficking to the lysosomes. Thus, the V232 M mutation may affect AD pathogenesis. Further understanding of the mechanistic role of PLD3 in AD could lead to developing novel therapeutic agents.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Neuroproteção/fisiologia , Fosfolipase D/genética , Fosfolipase D/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Predisposição Genética para Doença , Glicosilação , Humanos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Transporte Proteico
3.
Mol Cell Neurosci ; 95: 13-24, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30594669

RESUMO

The number of neurofibrillary tangles containing abnormal hyperphosphorylated tau protein correlates with the degree of dementia in Alzheimer's disease (AD). In addition, autophagosome accumulation and disturbance of autophagy, the process by which toxic aggregate proteins are degraded in the cytosol, are also found in AD models. These indicate that regulation of the autophagy-lysosome system may be a potential therapeutic target for AD. Activation of transcription factor EB (TFEB), a master regulator of autophagy-lysosome system gene transcription, reduces the amount of tau in APP mice. Here, to identify potential therapeutic compounds for AD, we performed two types of screening to determine pharmacologically active compounds that increase 1) neuronal viability in okadaic acid-induced tau hyperphosphorylation-related neurodegeneration models and 2) nuclear localization of TFEB in high-contents screening. Ouabain, a cardiac glycoside, was discovered as a common hit compound in both screenings. It also exhibited a significant protective effect in tau transgenic fly and mouse models in vivo. This work demonstrates that ouabain enhances activation of TFEB through inhibition of the mTOR pathway and induces downstream autophagy-lysosomal gene expression and cellular restorative properties. Therefore, therapeutic approaches using ouabain reduce the accumulation of abnormal toxic tau in vitro and in vivo.


Assuntos
Doença de Alzheimer/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ouabaína/farmacologia , Animais , Células Cultivadas , Drosophila melanogaster , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Ann Neurol ; 75(1): 88-97, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24114864

RESUMO

OBJECTIVE: ß-amyloid plaque is a critical pathological feature of Alzheimer disease. Pathologic studies suggest that neurodegeneration may occur in a retrograde fashion from axon terminals near ß-amyloid plaques, and that plaque may spread through brain regions. However, there is no direct experimental evidence to show transmission of ß-amyloid. METHODS: Microscopic imaging data of ß-amyloid transmission was acquired in cortical neuron cultures from Sprague-Dawley rat embryos using polydimethylsiloxane (PDMS) microfluidic culture chambers and in brain sections from in vivo ß-amyloid injection. RESULTS: We present direct imaging evidence in cultured cortical neurons, using PDMS microfluidic culture chambers, that ß-amyloid is readily absorbed by axonal processes and retrogradely transported to neuronal cell bodies. Transmission of ß-amyloid via neuronal connections was also confirmed in mouse brain. ß-Amyloid absorbed by distal axons accumulates in axonal swellings, mitochondria, and lysosomes of the cell bodies. Interestingly, dynasore, an inhibitor of dynamin, which is a protein indispensable for endocytosis, did not prevent retrograde transport of ß-amyloid, indicating that ß-amyloid is absorbed onto axonal membranes and transmitted via them to the cell body. Dynasore did decrease the transneuronal transmission of ß-amyloid, suggesting that this requires the internalization and secretion of ß-amyloid. INTERPRETATION: Our findings provide direct in vitro and in vivo evidence for spreading of ß-amyloid through neuronal connections, and suggest possible therapeutic approaches to blocking this spread.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Axônios/metabolismo , Membrana Celular/metabolismo , Córtex Cerebral/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Axônios/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cultura Primária de Células , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...