Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Biochem Nutr ; 51(2): 77-83, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22962522

RESUMO

Chronic gastric inflammation developing after Helicobacter pylori (H. pylori) infection is responsible for either dyspeptic symptom relevant to gastritis/peptic ulcer or gastric tumorigenesis, in which acid suppressants, especially proton pump inhibitors (PPIs), play role in relieving dyspepsia as well as the eradication regimen. Among several mediators engaged in propagating gastric inflammation after H. pylori infection, cyclooxygenase-2 (COX-2) might be the principal one, and several prescriptions have been made for decreasing the COX-2 levels. Multiple line of evidence are available for anti-inflammatory action of PPIs beyond acid suppression, but revaprazan, a novel acid pump antagonist launched in clinic, has also been suggested to exert significant anti-inflammatory actions as much as PPI. In the current study, we hypothesized that revaprazan could regulate H. pylori-driven COX-2 expression as one of its anti-inflammatory pharmacological actions. The changes of gastric COX-2 expression as well as responsible transcription factors were measured after H. pylori infection in the presence or absence of revaprazan. Infection of AGS cells with H. pylori induced significant up-regulation of COX-2 in time- and concentration-dependent manners, which was mediated by Akt phosphorylation. Revaprazan treatment significantly inhibited IkappaB-alpha degradation as well as Akt inactivation, resulting in attenuation of H. pylori-induced COX-2 expression. Additional rescuing action of revaprazan against H. pylori-induced cytotoxicity was noted. In conclusion, revaprazan imposed significant anti-inflammatory actions on H. pylori infection beyond acid suppression.

2.
J Ginseng Res ; 36(2): 135-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23717113

RESUMO

Previously, we reported that Helicobacter pylori-associated gastritis and gastric cancer are closely associated with increased levels of hydrogen sulfide (H2S) and that Korean red ginseng significantly reduced the severity of H. pylori-associated gastric diseases by attenuating H2S generation. Because the incubation of endothelial cells with H2S has been known to enhance their angiogenic activities, we hypothesized that the amelioration of H2S-induced gastric inflammation or angiogenesis in human umbilical vascular endothelial cells (HUVECs) might explain the preventive effect of Korean red ginseng on H. pylori-associated carcinogenesis. The expression of inflammatory mediators, angiogenic growth factors, and angiogenic activities in the absence or presence of Korean red ginseng extracts (KRGE) were evaluated in HUVECs stimulated with the H2S generator sodium hydrogen sulfide (NaHS). KRGE efficiently decreased the expression of cystathionine ß-synthase and cystathionine γ-lyase, enzymes that are essential for H2S synthesis. Concomitantly, a significant decrease in the expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase, and several angiogenic factors, including interleukin (IL)-8, hypoxia inducible factor-1a, vascular endothelial growth factor, IL-6, and matrix metalloproteinases, was observed; all of these factors are normally induced after NaHS. An in vitro angiogenesis assay demonstrated that NaHS significantly increased tube formation in endothelial cells, whereas KRGE pretreatment significantly attenuated tube formation. NaHS activated p38 and Akt, increasing the expression of angiogenic factors and the proliferation of HUVECs, whereas KRGE effectively abrogated this H2S-activated angiogenesis and the increase in inflammatory mediators in vascular endothelial cells. In conclusion, KRGE was able to mitigate H2S-induced angiogenesis, implying that antagonistic action against H2S-induced angiogenesis may be the mechanism underlying the gastric cancer preventive effects of KRGE in H. pylori infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA