Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 241(11-12): 2735-2750, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845379

RESUMO

Stroke is reported to be the second leading cause of death worldwide, among which ischemic stroke has fourfold greater incidence than intracerebral hemorrhage. Excitotoxicity induced by NMDAR plays a central role in ischemic stroke-induced neuronal death. However, intervention targeted NMDARs against ischemic stroke has failed, which may result from the complex composition of NMDARs and the dynamic changes of their subunits. In this current study, the levels of NR1, NR2A and NR2B subunits of NMDARs were observed upon different time points during the reperfusion after 1 h ischemia with the western blot assay. It was found that the changes of NR1 subunit were only detected after ischemia 1 h/reperfusion 1 day (1 d). While, the changes of NR2A and NR2B subunits may last to ischemia 1 h/reperfusion 7 day(7 d), indicating that NR2subunits may be a potential target for ischemia-reperfusion injuries at the sub-acute stage of ischemic stroke. Simultaneously, mitochondrial injuries in neurons were investigated with transmission electron microscopy (TEM), and mitochondrial dysfunction was evaluated with mitochondrial membrane proteins oxidative respiratory chain complex and OCR. When the antagonist of NMDARs was used before ischemic exposure, the neuronal mitochondrial dysfunction was alleviated, suggesting that these aberrant deviations of NMDARs from basal levels led to mitochondrial dysfunction. Furthermore, when the antagonist of NR2B was administrated intracerebroventricularly at the sub-acute cerebral ischemia, the volume of cerebral infarct region was decreased and the neural functions were improved. To sum up, the ratio of NR2B-containing NMDARs is vital for mitochondrial homeostasis and then neuronal survival. NR2B-targeted intervention should be chosen at the sub-acute stage of cerebral ischemia.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Humanos , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismo , Infarto Cerebral/metabolismo , AVC Isquêmico/metabolismo , Neurônios/metabolismo
2.
Neurochem Res ; 47(4): 1012-1024, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091982

RESUMO

Cerebral ischemia is a major cause of morbidity and permanent disability. To date, no treatments for cerebral ischemia/reperfusion injury can be effectively administered beyond 4-6 h after the ischemic insult. Our study aimed to clarify the significance of Sirt3 during acute cerebral ischemia and explore Sirt3-targeted therapy for ischemic injuries. Upon establishing the oxygen-glucose deprivation/reperfusion (OGD/R) cell model, changes of Sirt3 protein levels and the effects of Sirt3 overexpression on primary hippocampal neurons were detected at indicated time points. Moreover, mitochondrial damage was observed in neurons upon OGD/R injury. The results showed that compared with the normoxia group, Sirt3 protein was significantly decreased in hippocampal neurons exposed to 1 h of OGD followed by 12 h of reperfusion. In addition, the reduction of Sirt3 protein levels contributed to OGD/R-induced neuronal injuries, a higher ratio of neuronal apoptosis, and extensive production of reactive oxygen species (ROS). However, all neuronal injuries were partly rescued by Sirt3 overexpression induced by lentivirus transfection. Mitochondrial morphologies were significantly impaired after OGD/R, but partly salvaged by Sirt3 overexpression. We further explored whether pharmacologically activating Sirt3 is protective for neurons, and found that treatment with honokiol (a Sirt3 agonist) after OGD exposure activated Sirt3 during reperfusion and significantly alleviated OGD/R-induced neuronal injuries. Because mitochondrial functions are essential for neuronal survival, the current results indicate that Sirt3 may be an efficient target to suppress ischemic injuries via maintenance of mitochondrial homeostasis. Our current findings shed light on a novel therapeutic strategy against subacute ischemic injuries.


Assuntos
Traumatismo por Reperfusão , Sirtuína 3 , Apoptose , Glucose/metabolismo , Humanos , Neurônios/metabolismo , Oxigênio/metabolismo , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Sirtuína 3/metabolismo
3.
Theranostics ; 11(10): 4616-4636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754017

RESUMO

Background: Poststroke cognitive impairments are common in stroke survivors, and pose a high risk of incident dementia. However, the cause of these cognitive impairments is obscure and required an investigation. Methods: Oxygen-glucose deprivation (OGD) model and middle cerebral artery occlusion (MCAO) model were used to imitate in vitro or in vivo acute cerebral ischemia, respectively. The differentially expressed synaptosome associated protein 29 (SNAP29)-interacting proteins upon ischemia and reperfusion were analyzed with bioinformatics analysis and the results indicated that the changes of SNAP29 after acute ischemia were mainly involved in the synaptic functions. The outcomes of SNAP29 reduction were assessed with SNAP29 knockdown, which mimicked the distribution of SNAP29 along neuronal processes after acute ischemia. Using the whole-cell patch clamp recording method and transmission electron microscope, the pre-synaptic function and readily releasable pool (RRP) were observed after SNAP29 knock down. Using photogenetic manipulations and behavioral tests, the neuronal projection and cognitive functions of mice with SNAP29 knock down in hippocampus CA1 region were evaluated. Results: It was found that SNAP29 protein levels decreased in both in vitro and in vivo ischemic models. Further, the SNAP29 reduction wasn't associated with impaired autophagy flux and neuronal survival. When SNAP29 was knocked down in primary cortical neurons, the frequency of AMPARs-mediated mEPSCs, but not the amplitude, significantly decreased. Meanwhile, the mice with SNAP29 knockdown at CA1 region of hippocampus developed an impairment in hippocampus-mPFC (middle prefrontal cortex) circuit and behavioral dysfunctions. Moreover, the size of RRP at presynaptic sites was diminished. Conclusion: Since SNAP29 protein levels didn't significantly influence the neuronal survival and its decrease was sufficient to disturb the neural circuit via a presynaptic manner, the SNAP29-associated strategies may be an efficient target against poststroke synaptic dysfunction and cognitive deficits.


Assuntos
Disfunção Cognitiva/genética , Potenciais Pós-Sinápticos Excitadores/genética , AVC Isquêmico/complicações , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Vesículas Sinápticas/metabolismo , Animais , Autofagia/genética , Sobrevivência Celular/genética , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hipoglicemia , Hipóxia , Técnicas In Vitro , Infarto da Artéria Cerebral Média , Camundongos , Técnicas de Patch-Clamp , Cultura Primária de Células , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Ratos , Receptores de AMPA/metabolismo
4.
Sheng Li Xue Bao ; 73(1): 17-25, 2021 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-33665656

RESUMO

This study was aimed to determine the effect of acute cerebral ischemia on the protein expression level of silent mating type information regulator 2 homolog 3 (Sirt3) in the neurons and clarify the pathological role of Sirt3 in acute cerebral ischemia. The mice with middle cerebral artery occlusion (MCAO) and primary cultured rat hippocampal neurons with oxygen glucose deprivation (OGD) were used as acute cerebral ischemia models in vivo and in vitro, respectively. Sirt3 overexpression was induced in rat hippocampal neurons by lentivirus transfection. Western blot was utilized to measure the changes in Sirt3 protein expression level. CCK8 assay was used to detect cell viability. Immunofluorescent staining was used to detect mitochondrial function. Transmission electron microscope was used to detect mitochondrial autophagy. The results showed that, compared with the normoxia group, hippocampal neurons from OGD1 h/reoxygenation 2 h (R2 h) and OGD1 h/R12 h groups exhibited down-regulated Sirt3 protein expression levels. Compared with contralateral normal brain tissue, the ipsilateral penumbra region from MCAO1 h/reperfusion 24 h (R24 h) and MCAO1 h/R72 h groups exhibited down-regulated Sirt3 protein expression levels, while there was no significant difference between the Sirt3 protein levels on both sides of sham group. OGD1 h/R12 h treatment damaged mitochondrial function, activated mitochondrial autophagy and reduced cell viability in hippocampal neurons, whereas Sirt3 over-expression attenuated the above damage effects of OGD1 h/R12 h treatment. These results suggest that acute cerebral ischemia results in a decrease in Sirt3 protein level. Sirt3 overexpression can alleviate acute cerebral ischemia-induced neural injuries by improving the mitochondrial function. The current study sheds light on a novel strategy against neural injuries caused by acute cerebral ischemia.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Sirtuína 3 , Animais , Regulação para Baixo , Infarto da Artéria Cerebral Média , Camundongos , Mitocôndrias , Neurônios/metabolismo , Ratos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuínas
5.
Autophagy ; 17(6): 1519-1542, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33111641

RESUMO

Macroautophagy/autophagy is vital for neuronal homeostasis and functions. Accumulating evidence suggest that autophagy is impaired during cerebral ischemia, contributing to neuronal dysfunction and neurodegeneration. However, the outcomes after transient modification in autophagy machinery are not fully understood. This study investigated the effects of ischemic stress on autophagy and synaptic structures using a rat model of oxygen-glucose deprivation (OGD) in hippocampal neurons and a mouse model of middle cerebral artery occlusion (MCAO). Upon acute ischemia, an initial autophagy modification occurred in an upregulation manner. Following, the number of lysosomes increased, as well as lysosomal volume, indicating dysfunctional lysosomal storage. These changes were prevented by inhibiting autophagy via 3-methyladenine (3-MA) treatment or ATG7 (autophagy related 7) knockdown, or were mimicked by rapamycin (RAPA), a known activator of autophagy. This suggests that dysfunctional lysosomal storage is associated with the early burst of autophagy. Dysfunctional lysosomal storage contributed to autophagy dysfunction because the basal level of MTOR-dependent lysosomal biogenesis in the reperfusion was not sufficient to clear undegraded cargoes after transient autophagy upregulation. Further investigation revealed that impairment of synaptic ultra-structures, accompanied by dysfunctional lysosomal storage, may result from a failure in dynamic turnover of synaptic proteins. This indicates a vital role of autophagy-lysosomal machinery in the maintenance of synaptic structures. This study supports previous evidence that dysfunctional lysosomal storage may occur following the upregulation of autophagy in neurons. Appropriate autophagosome-lysosomal functioning is vital for maintenance of neuronal synaptic function and impacts more than the few known synaptic proteins.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; AD: Alzheimer disease; ALR: autophagic lysosome reformation; ATG7: autophagy related 7; CTSB: cathepsin B; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; DEGs: differentially expressed genes; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; GO: Gene Ontology; HBSS: Hanks' balanced salt solution; HPCA: hippocalcin; i.c.v: intracerebroventricular; KEGG: kyoto encyclopedia of genes and genomes; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; LSDs: lysosomal storage disorders; MAP2: microtubule-associated protein 2; MCAO: middle cerebral artery occlusion; mCTSB: mature CTSB; mCTSD: mature CTSD; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; OGD/R: oxygen-glucose deprivation/reoxygenation; PBS: phosphate-buffered saline; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; proCTSD: pro-cathepsin D; RAPA: rapamycin; RNA-seq: RNA sequencing; RPS6KB/p70S6K: ribosomal protein S6 kinase; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SIM: Structured Illumination Microscopy; SNAP25: synaptosomal-associated protein 25; SQSTM1/p62: sequestosome 1; SYN1: synapsin I; SYT1: synaptotagmin I; TBST: tris-buffered saline Tween-20; TEM: transmission electron microscopy; TFEB: transcription factor EB; tMCAO: transient middle cerebral artery occlusion; TTC: 2,3,5-triphenyltetrazolium chloride; TUBB3: tubulin, beta 3 class III.


Assuntos
Autofagia/fisiologia , Isquemia/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Regulação para Cima/fisiologia , Animais , Autofagossomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA