Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Altern Med ; 18(1): 189, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925351

RESUMO

BACKGROUND: Although the inhibitory effect of mistletoe on cancer cell growth has been reported, the underlying mechanisms to explain its anti-proliferative activity are not fully studied. Thus, we elucidated the potential molecular mechanism of the branch from Taxillus yadoriki (TY) parasitic to Neolitsea sericea (NS) (TY-NS-B) for the anti-proliferative effect. METHODS: Anti-cell proliferative effect was evaluated by MTT assay. The change of cyclin D1 protein or mRNA level was evaluated by Western blot and RT-RCR, respectively. RESULTS: In comparison of anti-proliferative effect of TY from the host trees such as Cryptomeria japonica (CJ), Neolitsea sericea (NS), Prunus serrulata (PS), Cinnamomum camphora (CC) and Quercus acutissima (QA), TY-NS showed higher anti-cell proliferative effect than TY-CJ, TY-PS, TY-CC or TY-QA. In addition, the anti-proliferative effect of branch from TY from all host trees was better than leaves. Thus, we selected the branch from Taxillus yadoriki parasitic to Neolitsea sericea (TY-NS-B) for the further study. TY-NS-B inhibited the cell proliferation in the various cancer cells and downregulated cyclin D1 protein level. MG132 treatment attenuated cyclin D1 downregulation of cyclin D1 protein level by TY-NS-B. In addition, TY-NS-B increased threonine-286 (T286) phosphorylation of cyclin D1, and the mutation of T286 to alanine (T286A) blocked cyclin D1 proteasomal degradation by TY-NS-B. But the upstream factors related to cyclin D1 degradation such as ERK1/2, p38, JNK, GSK3ß, PI3K, IκK or ROS did not affect cyclin D1 degradation by TY-NS-B. However, LMB treatment was observed to inhibit cyclin D1 degradation by TY-NS-B, and T286A blocked cyclin D1 degradation through suppressing cyclin D1 redistribution from nucleus to cytoplasm by TY-NS-B. In addition, TY-NS-B activated CRM1 expression. CONCLUSIONS: Our results suggest that TY-NS-B may suppress cell proliferation by downregulating cyclin D1 protein level through proteasomal degradation via T286 phosphorylation-dependent cyclin D1 nuclear export. These findings will provide the evidence that TY-NS-B has potential to be a candidate for the development of chemoprevention or therapeutic agents for human cancer.


Assuntos
Antineoplásicos/farmacologia , Ciclina D1/metabolismo , Lauraceae/química , Loranthaceae/química , Extratos Vegetais/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Etanol , Humanos , Lauraceae/parasitologia , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , RNA Mensageiro/metabolismo
2.
Int J Biol Macromol ; 116: 327-334, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29751039

RESUMO

Ginseng (Panax ginseng) has been reported to exert an anti-inflammatory activity in a variety of inflammatory condition. However, inflammation-regulatory activity of wood-cultivated ginseng has not been thoroughly evaluated. In this study, we evaluated the anti-inflammatory effect of wood-cultivated ginseng (WCG) and elucidated the potential mechanisms in LPS-stimulated RAW264.7 cells. WCG-O dose-dependently suppressed NO and PGE2 production in LPS-stimulated RAW264.7 cells. In addition, WCG-O attenuated LPS-mediated overexpression of iNOS and COX-2. In addition, WCG-O blocked the expression of TNF-α and IL-1ß. WCG-O inhibited the activation of IκK-α/ß, the phosphorylation of IκB-α, and degradation of IκB-α, which results in the inhibition of p65 nuclear accumulation and NF-κB activation. In addition, WCG-O suppressed the activation of ERK1/2, p38 and JNK, which results in the inhibition of ATF2 nuclear accumulation. These results indicate that WCG-O may exert anti-inflammatory activity by inhibiting NF-κB and MAPK signaling. From these findings, WCG-O has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Panax/química , Extratos Vegetais/farmacologia , Madeira/química , Animais , Anti-Inflamatórios/química , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Biomed Pharmacother ; 104: 1-7, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29758412

RESUMO

Mistletoe has been used as the herbal medicine to treat hypertension, diabetes mellitus, inflammation, arthritis and viral infection. In this study, we evaluated the anti-inflammatory effect of extracts of branch from Taxillus yadoriki being parasitic in Neolitsea sericea (TY-NS-B) using in vitro model. TY-NS-B significantly inhibited LPS-induced secretion of NO and PGE2 in RAW264.7 cells. TY-NS-B was also observed to inhibit LPS-mediated iNOS COX-2 expression. In addition, TY-NS-B attenuated production of inflammatory cytokines such as TNF-α and IL-1ß induced by LPS. TY-NS-B blocked LPS-mediated inhibitor of IκB-α, and inhibited p65 translocation to the nucleus and NF-κB activation. Furthermore, TY-NS-B reduced the phosphorylation of MAPKs such as p38 and JNK, but not ERK1/2. In addition, TY-NS-B increased ATF3 expression and ATF3 knockdown by ATF3 siRNA attenuated TY-NS-B-mediated inhibition of pro-inflammatory mediator expression. Collectively, our results suggest that TY-NS-B exerts potential anti-inflammatory effects by suppressing NF-κB and MAPK signaling activation, and increasing ATF3 expression. These findings indicate that TY-NS-B could be further developed as an anti-inflammatory drug.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Lauraceae/química , Loranthaceae/química , Extratos Vegetais/farmacologia , Fator 3 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
4.
BMC Complement Altern Med ; 18(1): 28, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29554905

RESUMO

BACKGROUND: Because twigs of Cinnamomum cassia (TC) have been reported to exert anti-cancer activity, the mechanistic study for TC's anti-cancer activity is required. Thus, we elucidated the potential molecular mechanism of TC's anti-proliferative effect and the induction of apoptosis in human colorectal cancer cells. METHODS: How water extracts form TC (TC-HW) was used in this study. Anti-cell proliferative effect of TC-HW was evaluated by MTT assay. The change of protein or mRNA level by TC-HW was evaluated by Western blot and RT-RCR, respectively. The promoter construct for ATF3, NF-κB, TOP-FLASH or FOP-FLASH was used for the investigation of the transcriptional activity for ATF3, NF-κB or Wnt. siRNA for ATF3 or p65 was used for the knockdown of ATF3 and p65. RESULTS: TC-HW reduced the cell viability in human colorectal cancer cells. TC-HW decreased cyclin D1 protein level through cyclin D1 degradation via GSK3ß-dependent threonine-286 (T286) phosphorylation of cyclin D1, indicating that cyclin D1 degradation may contribute to TC-HW-mediated decrease of cyclin D1 protein level. TC-HW downregulated the expression of cyclin D1 mRNA level and inhibited Wnt activation through the downregulation of ß-catenin and TCF4 expression, indicating that inhibition of cyclin D1 transcription may also result in TC-HW-mediated decrease of cyclin D1 protein level. In addition, TC-HW was observed to induce apoptosis through ROS-dependent DNA damage. TC-HW-induced ROS increased NF-κB and ATF3 activation, and inhibition of NF-κB and ATF3 activation attenuated TC-HW-mediated apoptosis. CONCLUSIONS: Our results suggest that TC-HW may suppress cell proliferation through the downregulation of cyclin D1 via proteasomal degradation and transcriptional inhibition, and may induce apoptosis through ROS-dependent NF-κB and ATF3 activation. These effects of TC-HW may contribute to the reduction of cell viability in human colorectal cancer cells. From these findings, TC-HW has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cinnamomum aromaticum/química , Neoplasias Colorretais/fisiopatologia , Inibidores do Crescimento/farmacologia , Extratos Vegetais/farmacologia , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Caules de Planta/química , beta Catenina/genética , beta Catenina/metabolismo
5.
Am J Chin Med ; 46(1): 191-207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29298515

RESUMO

Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Frutas/química , Extratos Vegetais/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Vitex/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Humanos , Fitoterapia , Extratos Vegetais/uso terapêutico , Células Tumorais Cultivadas
6.
BMC Complement Altern Med ; 17(1): 445, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28870200

RESUMO

BACKGROUND: Although it has been reported to contain high polyphenols, the pharmacological studies of the calyx of Diospyros kaki Thunb (DKC) have not been elucidated in detail. In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. METHODS: Anti-cell proliferative effect of 70% ethanol extracts from the calyx of Diospyros kaki (DKC-E70) was evaluated by MTT assay. The effect of DKC-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. RESULTS: DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3ß. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of ß-catenin and TCF4, and ß-catenin/TCF-dependent luciferase activity. CONCLUSIONS: Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3ß, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Diospyros/química , Extratos Vegetais/administração & dosagem , Complexo de Endopeptidases do Proteassoma/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/fisiopatologia , Células HCT116 , Células HT29 , Humanos , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , beta Catenina/genética , beta Catenina/metabolismo
7.
Am J Chin Med ; 45(4): 901-915, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28468511

RESUMO

Fruit from Vitex rotundifolia L. (VF) has been reported to initiate apoptosis in human colorectal cancer cells through the accumulation of reactive oxygen species. Since various regulatory factors are involved in the apoptotic pathway, further study of the potential mechanisms of VF associated with the induction of apoptosis may be important despite the fact that the molecular target of VF for apoptosis has already been elucidated. In this study, we showed a new potential mechanism for the relationship between VF-mediated ATF3 expression and apoptosis to better understand the apoptotic mechanism of VF in human colorectal cancer cells. VF reduced the cell viability and induced apoptosis in human colorectal cancer cells. VF treatment increased both the protein and mRNA level of ATF3 and upregulated ATF3 promoter activity. The cis-element responsible for ATF3 transcriptional activation by VF was CREB which is located between [Formula: see text]147 to [Formula: see text]85 of ATF3 promoter. Inhibitions of ERK1/2, p38, JNK and GSK3[Formula: see text] blocked VF-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of PARP by VF, while ATF3 overexpression increased VF-mediated cleaved PARP. ATF3 knockdown also attenuated VF-mediated cell viability and cell death. In addition, VF downregulated Bcl-2 expression at both protein and mRNA level. ATF3 knockdown by ATF3 siRNA blocked VF-mediated downregulation of Bcl-2. In conclusion, VF may activate ATF3 expression through transcriptional regulation and subsequently suppress Bcl-2 expression as an anti-apoptotic protein, which may result in the induction of apoptosis in human colorectal cancer cells.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Vitex/química , Fator 3 Ativador da Transcrição/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Frutas/química , Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Extratos Vegetais/isolamento & purificação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
8.
Biomol Ther (Seoul) ; 25(3): 337-343, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27871156

RESUMO

Kahweol as a coffee-specific diterpene has been reported to induce apoptosis in human cancer cells. Although some molecular targets for kahweol-mediated apoptosis have been elucidated, the further mechanism for apoptotic effect of kahweol is not known. Activating transcription factor 3 (ATF3) has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which kahweol stimulates ATF3 expression and apoptosis in human colorectal cancer cells. Kahweol increased apoptosis in human colorectal cancer cells. It also increased ATF3 expression through the transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by kahweol was CREB located between -147 to -85 of ATF3 promoter. ATF3 overexpression increased kahweol-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by kahweol. Inhibition of ERK1/2 and GSK3ß blocked kahweol-mediated ATF3 expression. The results suggest that kahweol induces apoptosis through ATF3-mediated pathway in human colorectal cancer cells.

9.
Pharmazie ; 72(6): 348-354, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442024

RESUMO

Microorganisms have been regarded as important sources of novel bioactive natural products. In this study, we evaluated the anti-cancer activity and the potential mechanism of Bacillus amyloliquefaciens AK-0 newly isolated from the rhizosphere soil of Korean ginseng. The ethyl acetate fraction from the culture medium of B. amyloliquefaciens AK-0 (EA-AK0) inhibited markedly the proliferation of human colorectal cancer cells such as HCT116, SW480, LoVo and HT-29. EA-AK0 effectively decreased cyclin D1 protein level in human colorectal cancer cells, while cyclin D1 mRNA level was not changed by EA-AK0 treatment. Inhibition of proteasomal degradation by MG132 blocked EA-AK0-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with MRB. In addition, EA-AK0 increased threonine-286 (T286) phosphorylation of cyclin D1, and a point mutation of T286 to alanine attenuated cyclin D1 degradation by EA-AK0. Inhibition of GSK3ß by LiCl suppressed cyclin D1 phosphorylation and downregulation by EA-AKO. From these results, EA-AK0 may suppress the proliferation of human colorectal cancer cells by inducing cyclin D1 proteasomal degradation through GSK3ß-dependent T286 phosphorylation. These results indicate that EA-AK0 could be used for treating colorectal cancer and serve as a potential candidate for anticancer drug development. In addition, these findings will be helpful for expanding the knowledge on the molecular anti-cancer mechanisms of EA-AK0.


Assuntos
Antineoplásicos/farmacologia , Bacillus amyloliquefaciens/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Ciclina D1/metabolismo , Antineoplásicos/isolamento & purificação , Bacillus amyloliquefaciens/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Rizosfera , Microbiologia do Solo , Treonina/genética , Treonina/metabolismo
10.
BMC Complement Altern Med ; 16(1): 373, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27670681

RESUMO

BACKGROUND: Psoralea Fructus (PF), the dried and ripe fruit of Psoralea corylifolia exhibits an anti-cancer activity. However, the molecular mechanisms by which PF inhibits the proliferation of cancer cells have not been elucidated in detail. Cyclin D1 and CDK4 are important regulatory proteins in cell growth and are overexpressed in many cancer cells. In this study, we investigated the molecular mechanism of PF on the downregulation of cyclin D1 and CDK4 level. METHODS: Cell growth was evaluated by MTT assay. The effect of PF on cyclin D1 and CDK4 expression was evaluated by Western blot or RT-PCR. RESULTS: PF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 (IC50: 45.3 ± 1.2 µg/ml), SW480 (IC50: 37.9 ± 1.6 µg/ml), LoVo (IC50: 23.3 ± 1.9 µg/ml µg/ml) HT-29 (IC50 value: 40.7 ± 1.5 µg/ml). PF induced decrease in the protein expression of cyclin D1 and CDK4. However, the mRNA expression of cyclin D1 and CDK4 did not be changed by PF; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 degradation, we found that T286 of cyclin D1 play a pivotal role in PF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that PF-mediated degradation of cyclin D1 and CDK4 is dependent on ERK1/2 and/or GSK3ß. CONCLUSIONS: Our results suggest that PF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

11.
Food Chem Toxicol ; 95: 142-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27424123

RESUMO

Kahweol as a coffee-specific diterpene has been reported to exert anti-cancer properties. However, the mechanism responsible for the anti-cancer effects of kahweol is not fully understood. The main aim of this investigation was to determine the effect of kahweol on cell proliferation and the possible mechanisms in human colorectal cancer cells. Kahweol inhibited markedly the proliferation of human colorectal cancer cell lines such as HCT116, SW480. Kahweol decreased cyclin D1 protein level in HCT116 and SW480 cells. Contrast to protein levels, cyclin D1 mRNA level and promoter activity did not be changed by kahweol treatment. MG132 treatment attenuated kahweol-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in kahweol-treated cells. Kahweol increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated cyclin D1 degradation by kahweol. Inhibition of ERK1/2 by PD98059, JNK by SP600125 or GSK3ß by LiCl suppressed cyclin D1 phosphorylation and downregulation by kahweol. Furthermore, the inhibition of nuclear export by LMB attenuated cyclin D1 degradation by kahweol. In conclusion, kahweol-mediated cyclin D1 degradation may contribute to the inhibition of the proliferation in human colorectal cancer cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Café/química , Neoplasias Colorretais/tratamento farmacológico , Ciclina D1/metabolismo , Diterpenos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Treonina/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclina D1/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , MAP Quinase Quinase 4/genética , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Treonina/química , Células Tumorais Cultivadas
12.
Mar Drugs ; 14(4)2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27043582

RESUMO

Phlorofucofuroeckol A (PFF-A), one of the phlorotannins found in brown algae, has been reported to exert anti-cancer property. However, the molecular mechanism for the anti-cancer effect of PFF-A has not been known. Activating transcription factor 3 (ATF3) has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which PFF-A stimulates ATF3 expression and apoptosis in human colorectal cancer cells. PFF-A decreased cell viability through apoptosis of human colorectal cancer cells. PFF-A increased ATF3 expression through regulating transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by PFF-A was cAMP response element binding protein (CREB), located between positions -147 and -85 of the ATF3 promoter. Inhibition of p38, c-Jun N-terminal kinases (JNK), glycogen synthase kinase (GSK) 3ß, and IκB kinase (IKK)-α blocked PFF-A-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of poly (ADP-ribose) polymerase (PARP) by PFF-A, while ATF3 overexpression increased PFF-A-mediated cleaved PARP. These results suggest that PFF-A may exert anti-cancer property through inducing apoptosis via the ATF3-mediated pathway in human colorectal cancer cells.


Assuntos
Fator 3 Ativador da Transcrição/genética , Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Dioxinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteína de Ligação a CREB/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Células HCT116 , Células HT29 , Humanos , Quinase I-kappa B/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
13.
Biomol Ther (Seoul) ; 24(2): 140-6, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26797111

RESUMO

Naringenin (NAR) as one of the flavonoidsobserved in grapefruit has been reported to exhibit an anti-cancer activity. Activating transcription factor 3 (ATF3) is associated with apoptosis in human colon cancer cells. This study was performed to investigate the molecular mechanism by which NAR stimulates ATF3 expression and apoptosis in human colon cancer cells. NAR reduced the cell viability and induced an apoptosis in human colon cancer cells. ATF3 overexpression increased NAR-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by NAR. NAR increased ATF3 expression in both protein and mRNA level, and increased the luciferase activity of ATF3 promoter in a dose-dependent manner. The responsible region for ATF3 transcriptional activation by NAR is located between -317 and -148 of ATF3 promoter. p38 inhibition blocked NAR-mediated ATF3 expression, its promoter activation and apoptosis. The results suggest that NAR induces apoptosis through p38-dependent ATF3 activation in human colon cancer cells.

14.
Biomol Ther (Seoul) ; 23(4): 339-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26157550

RESUMO

Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. However, more detailed mechanism by which NAR exerts anti-cancer properties still remains unanswered. Thus, in this study, we have shown that NAR down-regulates the level of cyclin D1 in human colorectal cancer cell lines, HCT116 and SW480. NAR inhibited the cell proliferation in HCT116 and SW480 cells and decreased the level of cyclin D1 protein. Inhibition of proteasomal degradation by MG132 blocked NAR-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with NAR. In addition, NAR increased the phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine blocked cyclin D1 downregulation by NAR. p38 inactivation attenuated cyclin D1 downregulation by NAR. From these results, we suggest that NAR-mediated cyclin D1 downregulation may result from proteasomal degradation through p38 activation. The current study provides new mechanistic link between NAR, cyclin D1 downregulation and cell growth in human colorectal cancer cells.

15.
Fitoterapia ; 101: 162-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25615593

RESUMO

Tanshinone I (TAN I) as one of the naturally occurring diterpenes from Salvia miltiorrhizae Bunge (Danshen) has been reported to exhibit an anti-cancer activity. However, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to elucidate the biological mechanism by which TAN I may induce the inhibition of cell growth in human colorectal cancer cells. The treatment of TAN I suppressed the cell proliferation in HCT116 and SW480 cells and decreased the level of cyclin D1 protein. However, the mRNA level of cyclin D1 did not changed by TAN I treatment. Inhibition of proteasomal degradation by MG132 blocked TAN I-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with TAN I. In addition, phosphorylation of cyclin D1 at threonine-286 was increased by TAN I and a point mutation of threonine-286 to alanine attenuated TAN I-mediated cyclin D1 downregulation. Inhibition of ERK1/2 suppressed cyclin D1 phosphorylation and subsequent downregulation by TAN I. From these results, we suggest that TAN I-mediated cyclin D1 downregulation may result from proteasomal degradation through its ERK1/2-mediated phosphorylation of threonine-286. In conclusion, the current study provides new mechanistic link between TAN I, cyclin D1 downregulation and cell growth in human colorectal cancer cells.


Assuntos
Abietanos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Ciclina D1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Regulação para Baixo , Humanos , Fosforilação
16.
Int Immunopharmacol ; 24(1): 1-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25479723

RESUMO

Silymarin from milk thistle (Silybum marianum) plant has been reported to show anti-cancer, anti-inflammatory, antioxidant and hepatoprotective effects. For anti-cancer activity, silymarin is known to regulate cell cycle progression through cyclin D1 downregulation. However, the mechanism of silymarin-mediated cyclin D1 downregulation still remains unanswered. The current study was performed to elucidate the molecular mechanism of cyclin D1 downregulation by silymarin in human colorectal cancer cells. The treatment of silymarin suppressed the cell proliferation in HCT116 and SW480 cells and decreased cellular accumulation of exogenously-induced cyclin D1 protein. However, silymarin did not change the level of cyclin D1 mRNA. Inhibition of proteasomal degradation by MG132 attenuated silymarin-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with silymarin. In addition, silymarin increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated silymarin-mediated cyclin D1 downregulation. Inhibition of NF-κB by a selective inhibitor, BAY 11-7082 suppressed cyclin D1 phosphorylation and downregulation by silymarin. From these results, we suggest that silymarin-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via NF-κB activation. The current study provides new mechanistic link between silymarin, cyclin D1 downregulation and cell growth in human colorectal cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Ciclina D1/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Silybum marianum , Silimarina/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Células HCT116 , Humanos , Leupeptinas/farmacologia , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Mutação Puntual/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Sulfonas/farmacologia , Treonina/genética , Treonina/metabolismo
17.
BMC Complement Altern Med ; 14: 487, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25494848

RESUMO

BACKGROUND: Recently, Abeliophyllum distichum Nakai (A. distichum) has been reported to exert the inhibitory effect on angiotensin converting enzyme. However, no specific pharmacological effects from A. distichum have been described. We performed in vitro study to evaluate anti-cancer properties of A. distichum and then elucidate the potential mechanisms. METHODS: Cell viability was measured by MTT assay. ATF3 expression level was evaluated by Western blot or RT-PCR and ATF3 transcriptional activity was determined using a dual-luciferase assay kit after the transfection of ATF3 promoter constructs. In addition, ATF3-dependent apoptosis was evaluated by Western blot after ATF3 knockdown using ATF3 siRNA. RESULTS: Exposure of ethyl acetate fraction from the parts of A. distichum including flower, leaf and branch to human colorectal cancer cells, breast cancer cells and hepatocellular carcinoma reduced the cell viability. The branch extracts from A. distichum (EAFAD-B) increased the expression of activating transcription factor 3 (ATF3) and promoter activity, indicating transcriptional activation of ATF3 gene by EAFAD-B. In addition, our data showed that EAFAD-B-responsible sites might be between -147 and -85 region of the ATF3 promoter. EAFAD-B-induced ATF3 promoter activity was significantly decreased when the CREB site was deleted. However, the deletion of Ftz sites did not affect ATF3 promoter activity by EAFAD-B. We also observed that inhibition of p38MAPK and GSK3ß attenuated EAFAD-B-mediated ATF3 promoter activation. Also, EAFAD-B contributes at least in part to increase of ATF3 accumulation. CONCLUSION: These findings suggest that the anti-cancer activity of EAFAD-B may be a result of ATF3 promoter activation and subsequent increase of ATF3 expression.


Assuntos
Fator 3 Ativador da Transcrição/biossíntese , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Oleaceae , Fitoterapia , Extratos Vegetais/uso terapêutico , Ativação Transcricional/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Arch Biochem Biophys ; 564: 203-10, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25447816

RESUMO

Protocatechualdehyde (PCA) is one of the important compounds found in barley, green cavendish bananas and grapevine leaves. PCA shows anti-cancer activities in breast, leukemia and colorectal cancer cells. Previous study reported that PCA exerts anti-cancer activity through down-regulating cyclin D1 and HDAC2 in human colorectal cancer cells. However, the underlying mechanisms for the expression of activating transcription factor 3 (ATF3) by PCA has not been studied. Thus, we performed in vitro study to investigate if treatment of PCA affects ATF3 expression and ATF3-mediated apoptosis in human colorectal cancer cells. PCA decreased cell viability in a dose-dependent manner in HCT116 and SW480 cells. In addition, PCA reduced cell viability in MCF-7, MDA-MB-231 and HepG-2 cells. Exposure of PCA activated the levels of ATF3 protein and mRNA in HCT116 and SW480 cells. Inhibition of ERK1/2/ by PD98059 and p38 by SB203580 inhibited PCA-induced ATF3 expression and transcriptional activation. ATF3-knockdown inhibited PCA-induced apoptosis and cell viability. In addition, ATF3 overexpression enhanced PCA-mediated cleavage of PARP. These findings suggest that inhibition of cell viability and apoptosis by PCA may be result of ATF3 expression through ERK1/2 and p38-mediated transcriptional activation.


Assuntos
Fator 3 Ativador da Transcrição/biossíntese , Anticoagulantes/farmacologia , Apoptose/efeitos dos fármacos , Benzaldeídos/farmacologia , Catecóis/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Fator 3 Ativador da Transcrição/genética , Apoptose/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas de Neoplasias/genética , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
BMC Complement Altern Med ; 14: 408, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25338635

RESUMO

BACKGROUND: Ginger leaf (GL) has long been used as a vegetable, tea and herbal medicine. However, its pharmacological properties are still poorly understood. Thus, we performed in vitro studies to evaluate anti-cancer properties of ginger leaf and then elucidate the potential mechanisms involved. METHODS: Cell viability was measured by MTT assay. ATF3 expression level was evaluated by Western blot or RT-PCR and ATF3 transcriptional activity was determined using a dual-luciferase assay kit after the transfection of ATF3 promoter constructs. In addition, ATF3-dependent apoptosis was evaluated by Western blot after ATF3 knockdown using ATF3 siRNA. RESULTS: Exposure of GL to human colorectal cancer cells (HCT116, SW480 and LoVo cells) reduced the cell viability and induced apoptosis in a dose-dependent manner. In addition, GL reduced cell viability in MCF-7, MDA-MB-231 and HepG-2 cells. ATF3 knockdown attenuated GL-mediated apoptosis. GL increased activating transcription factor 3 (ATF3) expressions in both protein and mRNA level and activated ATF3 promoter activity, indicating transcriptional activation of ATF3 gene by GL. In addition, our data showed that GL-responsible sites might be between -318 and -85 region of the ATF3 promoter. We also observed that ERK1/2 inhibition by PD98059 attenuated GL-mediated ATF3 expression but not p38 inhibition by SB203580, indicating ERK1/2 pathway implicated in GL-induced ATF3 activation. CONCLUSIONS: These findings suggest that the reduction of cell viability and apoptosis by GL may be a result of ATF3 promoter activation and subsequent increase of ATF3 expression through ERK1/2 activation in human colorectal cancer cells.


Assuntos
Fator 3 Ativador da Transcrição/genética , Antineoplásicos/farmacologia , Neoplasias Colorretais/genética , Extratos Vegetais/farmacologia , Folhas de Planta/química , Zingiber officinale/química , Fator 3 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/fisiopatologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...