Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(12): e2305298, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233196

RESUMO

High-capacity silicon (Si) materials hold a position at the forefront of advanced lithium-ion batteries. The inherent potential offers considerable advantages for substantially increasing the energy density in batteries, capable of maximizing the benefit by changing the paradigm from nano- to micron-sized Si particles. Nevertheless, intrinsic structural instability remains a significant barrier to its practical application, especially for larger Si particles. Here, a covalently interconnected system is reported employing Si microparticles (5 µm) and a highly elastic gel polymer electrolyte (GPE) through electron beam irradiation. The integrated system mitigates the substantial volumetric expansion of pure Si, enhancing overall stability, while accelerating charge carrier kinetics due to the high ionic conductivity. Through the cost-effective but practical approach of electron beam technology, the resulting 500 mAh-pouch cell showed exceptional stability and high gravimetric/volumetric energy densities of 413 Wh kg-1, 1022 Wh L-1, highlighting the feasibility even in current battery production lines.

2.
Angew Chem Int Ed Engl ; 62(48): e202312928, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37842904

RESUMO

High-capacity Li-rich layered oxides using oxygen redox as well as transition metal redox suffer from its structural instability due to lattice oxygen escaped from its structure during oxygen redox and the following electrolyte decomposition by the reactive oxygen species. Herein, we rescued a Li-rich layered oxide based on 4d transition metal by employing an organic superoxide dismutase mimics as a homogeneous electrolyte additive. Guaiacol scavenged superoxide radicals via dismutation or disproportionation to convert two superoxide molecules to peroxide and dioxygen after absorbing lithium superoxide on its partially negative oxygen of methoxy and hydroxyl groups. Additionally, guaiacol was decomposed to form a thin and stable cathode-electrolyte interphase (CEI) layer, endowing the cathode with the interfacial stability.

3.
ACS Appl Mater Interfaces ; 15(34): 40378-40384, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37594234

RESUMO

Dye-sensitized photorechargeable batteries (DSPBs) have recently gained attention for realizing energy recycling systems under dim light conditions. However, their performance under high storage efficiency (i.e., the capacity charged within a limited time) for practical application remains to be evaluated. Herein, we varied the lithium (Li)-ion concentration, which plays a dual role as energy charging and storage components, to obtain the optimized energy density of DSPBs. Electrochemical studies showed that the Li-ion concentration strongly affected the resistance characteristics of DSPBs. In particular, increasing the Li-ion concentration improved the output capacity and decreased the output voltage. Consequently, the energy density of the finely optimized DSPB improved from 8.73 to 12.64 mWh/cm3 when irradiated by a 1000-lx indoor light-emitting-diode lamp. These findings on the effects of Li-ion concentrations in electrolytes on the performance of DSPBs represent a step forward in realizing the practical application of DSPBs.

4.
Small ; 19(47): e2303263, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37434049

RESUMO

A cobalt phthalocyanine having an electron-poor CoN4 (+δ) in its phthalocyanine moiety was presented as an electrocatalyst for hydrogen peroxide oxidation reaction (HPOR). We suggested that hydrogen peroxide as an electrolysis medium for hydrogen production and therefore as a hydrogen carrier, demonstrating that the electrocatalyst guaranteed high hydrogen production rate by hydrogen peroxide splitting. The electron deficiency of cobalt allows CoN4 to have the highly HPOR-active monovalent oxidation state and facilitates HPOR at small overpotentials range around the onset potential. The strong interaction between the electron-deficient cobalt and oxygen of peroxide adsorbates in Co─OOH- encourages an axially coordinated cobalt oxo complex (O═CoN4 ) to form, the O═CoN4 facilitating the HPOR efficiently at high overpotentials. Low-voltage oxygen evolution reaction guaranteeing low-voltage hydrogen production is successfully demonstrated in the presence of the metal-oxo complex having electron-deficient CoN4 . Hydrogen production by 391 mA cm-2 at 1 V and 870 mA cm-2 at 1.5 V is obtained. Also, the techno-economic benefit of hydrogen peroxide as a hydrogen carrier is evaluated by comparing hydrogen peroxide with other hydrogen carriers such as ammonia and liquid organic hydrogen carriers.

5.
Small ; 19(11): e2206918, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36567426

RESUMO

Abundant availability of seawater grants economic and resource-rich benefits to water electrolysis technology requiring high-purity water if undesired reactions such as chlorine evolution reaction (CER) competitive to oxygen evolution reaction (OER) are suppressed. Inspired by a conceptual computational work suggesting that OER is kinetically improved via a double activation within 7 Å-gap nanochannels, RuO2 catalysts are realized to have nanoscopic channels at 7, 11, and 14 Å gap in average (dgap ), and preferential activity improvement of OER over CER in seawater by using nanochanneled RuO2 is demonstrated. When the channels are developed to have 7 Å gap, the OER current is maximized with the overpotential required for triggering OER minimized. The gap value guaranteeing the highest OER activity is identical to the value expected from the computational work. The improved OER activity significantly increases the selectivity of OER over CER in seawater since the double activation by the 7 Å-nanoconfined environments to allow an OER intermediate (*OOH) to be doubly anchored to Ru and O active sites does not work on the CER intermediate (*Cl). Successful operation of direct seawater electrolysis with improved hydrogen production is demonstrated by employing the 7 Å-nanochanneled RuO2 as the OER electrocatalyst.

6.
ACS Appl Mater Interfaces ; 14(36): 40793-40800, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044267

RESUMO

A multifunctional electrolyte additive for lithium oxygen batteries (LOBs) was designed to have (1) a redox-active moiety to mediate decomposition of lithium peroxide (Li2O2 as the final discharge product) during charging and (2) a solvent moiety to solvate and stabilize lithium superoxide (LiO2 as the intermediate discharge product) in electrolyte during discharging. 4-Acetamido-TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidin-1-yl)oxyl) or AAT was employed as the additive working for both charge and discharge processes (amphi-active). The redox-active moiety was rooted in TEMPO, while the acetamido (AA) functional group inherited the high donor number (DN) of N,N-dimethylacetamide (DMAc). Integrating two functional moieties (TEMPO and AA) into a single molecule resulted in the bifunctionality of AAT (1) facilitating Li2O2 decomposition by the TEMPO moiety and (2) encouraging the solvent mechanism of Li2O2 formation by the high-DN AA moiety. Significantly improved LOB performances were achieved by the superoxide-solvating charge redox mediator, which were not obtained by a simple cocktail of TEMPO and DMAc.

7.
ACS Appl Mater Interfaces ; 14(7): 9066-9072, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35132850

RESUMO

Quinones having a fully conjugated cyclic dione structure have been used as redox mediators in electrochemistry. 2,5-Ditert-butyl-1,4-benzoquinone (DBBQ or DB-p-BQ) as a para-quinone derivative is one of the representative discharge redox mediators for facilitating the oxygen reduction reaction (ORR) kinetics in lithium-oxygen batteries (LOBs). Herein, we presented that the redox activity of DB-p-BQ for electron mediation was possibly used for facilitating superoxide disproportionation reaction (SODR) by tuning the isomeric configuration of the carbonyl groups of the substituted quinone to change its reduction potentials. First, we expected a molecule having its reduction potential between oxygen/superoxide at 2.75 V versus Li/Li+ and superoxide/peroxide at 3.17 V to play a role of the SODR catalyst by transferring an electron from one superoxide (O2-) to another superoxide to generate dioxygen (O2) and peroxide (O22-). By changing the isomeric configuration from para (DB-p-BQ) to ortho (DB-o-BQ), the reduction potential of the first electron transfer (Q/Q-) of the ditert-butyl benzoquinone shifted positively to the potential range of the SODR catalyst. The electrocatalytic SODR-promoting functionality of DB-o-BQ kept the reactive superoxide concentration below a harmful level to suppress superoxide-triggered side reaction, improving the cycling durability of LOBs, which was not achieved by the para form. The second electron transfer process (Q-/ Q2-) of the DB-o-BQ, even if the same process of the para form was not used for facilitating ORR, played a role of mediating electrons between electrode and oxygen like the Q/Q- process of the para form. The ORR-promoting functionality of the ortho form increased the LOB discharge capacity and reduced the ORR overpotential.

8.
ACS Appl Mater Interfaces ; 14(1): 492-501, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932302

RESUMO

High-energy density lithium-oxygen batteries (LOBs) seriously suffer from poor rate capability and cyclability due to the slow oxygen-related electrochemistry and uncontrollable formation of lithium peroxide (Li2O2) as an insoluble discharge product. In this work, we accommodated the discharge product in macro-scale voids of a carbon-framed architecture with meso-dimensional channels on the carbon frame and open holes connecting the neighboring voids. More importantly, we found that a specific dimension of the voids guaranteed high capacity and cycling durability of LOBs. The best LOB performances were achieved by employing the carbon-framed architecture having voids of 0.8 µm size as the cathode of the LOB when compared with the cathodes having voids of 0.3 and 1.4 µm size. The optimized void size of 0.8 µm allowed only a monolithic integrity of lithium peroxide deposit within a void during discharging. The deposit was grown to be a yarn ball-looking sphere exactly fitting the shape and size of the void. The good electric contact allowed the discharge product to be completely decomposed during charging. On the other hand, the void space was not fully utilized due to the mass transfer pathway blockage at the sub-optimized 0.3 µm and the formation of multiple deposit integrities within a void at the sur-optimized 1.4 µm. Consequently, the critical void dimension at 0.8 µm was superior to other dimensions in terms of the void space utilization efficiency and the lithium peroxide decomposition efficiency, disallowing empty space and side reactions during discharging.

9.
Small ; 18(8): e2105724, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882975

RESUMO

A dendrite-free and chemically stabilized lithium metal anode is required for extending battery life and for the application of high energy density coupled with various cathode systems. However, uneven Li metal growth and the active surface in nature accelerate electrolyte dissipation and surface corrosion, resulting in poor cycle efficiency and various safety issues. Here, the authors suggest a thin artificial interphase using a multifunctional poly(styrene-b-butadiene-b-styrene) (SBS) copolymer to inhibit the electrochemical/chemical side reaction during cycling. Based on the physical features, hardness, adhesion, and flexibility, the optimized chemical structure of SBS facilitates durable mechanical strength and interphase integrity against repeated Li electrodeposition/dissolution. The effectiveness of the thin polymer film enables high cycle efficiency through the realization of a dendrite-free structure and a chemo-resistive surface of Li metal. The versatile anode demonstrates an improvement in the electrochemical properties, paired with diverse cathodes of high-capacity lithium cobalt oxide (3.5 mAh cm-2 ) and oxygen for advanced Li metal batteries with high energy density.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Galvanoplastia , Lítio/química , Polímeros
10.
ACS Appl Mater Interfaces ; 13(8): 9965-9974, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33599475

RESUMO

Nickel-rich layered oxides (LiNi1-x-yCoxMnyO2; (1 - x - y) ≥ 0.6), the high-energy-density cathode materials of lithium-ion batteries (LIBs), are seriously unstable at voltages higher than 4.5 V versus Li/Li+ and temperatures higher than 50 °C. Herein, we demonstrated that the failure mechanism of a nickel-rich layered oxide (LiNi0.6Co0.2Mn0.2O2) behind the instability was successfully suppressed by employing cyanoethyl poly(vinyl alcohol) having pyrrolidone moieties (Pyrd-PVA-CN) as a metal-ion-chelating gel polymer electrolyte (GPE). The metal-ion-chelating GPE blocked the plating of transition-metal ions dissolved from the cathode by capturing the ions (anode protection). High-concentration metal-ion environments developed around the cathode surface by the GPE suppressed the irreversible phase transition of the cathode material from the layered structure to the rock-salt structure (cathode protection). Resultantly, the capacity retention was significantly improved at a high voltage and a high temperature. Capacity retention and coulombic efficiency of a full-cell configuration of a nickel-rich layered oxide with graphite were significantly improved in the presence of the GPE especially at a high cutoff voltage (4.4 V) and an elevated temperature (55 °C).

11.
ACS Appl Mater Interfaces ; 12(26): 29235-29241, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32496039

RESUMO

Lithium metal has been considered as an anode material to improve energy densities of lithium chemistry-based rechargeable batteries (that is to say, lithium metal batteries or LMBs). Higher capacities and cell voltages are ensured by replacing practically used anode materials such as graphite with lithium metal. However, lithium metal as the LMB anode material has been challenged by its dendritic growth, electrolyte decomposition on its fresh surface, and its serious volumetric change. To address the problems of lithium metal anodes, herein, we guided and facilitated lithium ion transport along a spontaneously polarized and highly dielectric material. A three-dimensional web of nanodiameter fibers of ferroelectric beta-phase polyvinylidene fluoride (beta-PVDF) was loaded on a copper foil by electrospinning (PVDF#Cu). The electric field applied between the nozzle and target copper foil forced the dipoles of PVDF to be oriented centro-asymmetrically and then the beta structure induced ferroelectric polarization. Three-fold benefits of the ferroelectric nano-web architecture guaranteed the plating/stripping reversibility especially at high rates: (1) three-dimensional scaffold to accommodate the volume change of lithium metal during plating and stripping, (2) electrolyte channels between fibers to allow lithium ions to move, and (3) ferroelectrically polarized or negatively charged surface of beta-PVDF fibers to encourage lithium ion hopping along the surface. Resultantly, the beta-PVDF web architecture drove dense and integrated growth of lithium metal within its structure. The kinetic benefit expected from the ferroelectric lithium ion transport of beta-PVDF as well as the porous architecture of PVDF#Cu was realized in a cell of LFP as a cathode and lithium-plated PVDF#Cu as an anode. Excellent plating/stripping reversibility along repeated cycles was successfully demonstrated in the cell even at a high current such as 2.3 mA cm-2, which was not obtained by the nonferroelectric polymer layer.

12.
ACS Appl Mater Interfaces ; 11(46): 43039-43045, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31621283

RESUMO

Although the volume of antimony tremendously expands during the alloying reaction with sodium, it is considered a promising anode material for sodium-ion batteries (SIBs). Repeated volume changes along the sodiation/desodiation cycles encourage capacity fading by triggering pulverization accompanying electrolyte decomposition. Additionally, the low cation transference number of sodium ions is another hindrance for application in SIBs. In this work, a binder was designed for the antimony in SIB cells to ensure bifunctionality and improve (1) the mechanical toughness to suppress the serious volume change and (2) the transference number of sodium ions. A cross-linked composite of poly(acrylic acid) and cyanoethyl pullulan (pullulan-CN) was presented as the binder. The polysaccharide backbone of pullulan-CN was responsible for the mechanical toughness, while the cyanoethyl groups of pullulan-CN improved the lithium-cation transfer. The antimony-based SIB cells using the composite binder showed improved cycle life with enhanced kinetics. The capacity was maintained at 76% of the initial value at the 200th cycle of 1C discharge following 1C charge, while the capacity at 20C was 61% of the capacity at 0.2C, implying that the composite binder significantly improved the sodiation/desodiation reversibility of antimony.

13.
ACS Nano ; 13(8): 9190-9197, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31319025

RESUMO

Reactive oxygen species or superoxide (O2-), which damages or ages biological cells, is generated during metabolic pathways using oxygen as an electron acceptor in biological systems. Superoxide dismutase (SOD) protects cells from superoxide-triggered apoptosis by converting superoxide to oxygen and peroxide. Lithium-oxygen battery (LOB) cells have the same aging problems caused by superoxide-triggered side reactions. We transplanted the function of SOD of biological systems into LOB cells. Malonic acid-decorated fullerene (MA-C60) was used as a superoxide disproportionation chemocatalyst mimicking the function of SOD. As expected, MA-C60 as the superoxide scavenger improved capacity retention along charge/discharge cycles successfully. A LOB cell that failed to provide a meaningful capacity just after several cycles at high current (0.5 mA cm-2) with 0.5 mAh cm-2 cutoff survived up to 50 cycles after MA-C60 was introduced to the electrolyte. Moreover, the SOD-mimetic catalyst increased capacity, e.g., more than a 6-fold increase at 0.2 mA cm-2. The experimentally observed toroidal morphology of the final discharge product of oxygen reduction (Li2O2) and density functional theory calculation confirmed that the solution mechanism of Li2O2 formation, more beneficial than the surface mechanism from the capacity-gain standpoint, was preferred in the presence of MA-C60.


Assuntos
Biomimética , Fontes de Energia Elétrica , Superóxido Dismutase/química , Superóxidos/farmacologia , Apoptose/efeitos dos fármacos , Catálise , Elétrons , Fulerenos/química , Lítio/química , Redes e Vias Metabólicas/efeitos dos fármacos , Oxigênio/química , Peróxidos/química , Espécies Reativas de Oxigênio/química , Superóxidos/química
14.
Nat Commun ; 10(1): 2364, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147548

RESUMO

Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of ~ 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g-1 even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system.

15.
Nanotechnology ; 30(27): 275603, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808015

RESUMO

Germanium nanoparticles were synthesized and subjected to study as anode materials for lithium ion batteries and sodium ion batteries. Laser pyrolysis of GeH4 was used to produce germanium nanoparticles and the average diameter of these nanoparticles was easily controlled by regulating sensitizer gas flow rates during the process. 60 and 10 nm diameter nanoparticles were synthesized and micron-size powder was purchased and these three pure germanium powder samples were tested as the anode materials of lithium ion batteries and sodium ion batteries in terms of cycle retention, long term cycles and the kinetics of reactions. Experimental results showed that the smallest powder sample which is synthesized, average 10 nm, exhibited excellent performances in both kinds of batteries. According to the results, the characteristics of batteries improved as the size of germanium powder decreased consistently. Pure germanium was thoroughly investigated as an anode of metal-ion batteries with regard to its powder size. The experimental data and synthesis approach of germanium nanoparticles suggested in this research would be a good example for the utilization of elemental germanium in high performance batteries.

16.
Adv Mater ; 31(20): e1804909, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30387233

RESUMO

A gel polymer electrolyte (GPE) is a liquid electrolyte (LE) entrapped by a small amount of polymer network less than several wt%, which is characterized by properties between those of liquid and solid electrolytes in terms of the ionic conductivity and physical phase. Electrolyte leakage and flammability, demerits of liquid electrolytes, can be mitigated by using GPEs in electrochemical cells. However, the contact problems between GPEs and porous electrodes are challenging because it is difficult to incorporate GPEs into the pores and voids of electrodes. Herein, the focus is on GPEs that are gelated in situ within cells instead of covering comprehensive studies of GPEs. A mixture of LE and monomer or polymer in a liquid phase is introduced into a pre-assembled cell without electrolyte, followed by thermal gelation based on physical gelation, monomer polymerization, or polymer cross-linking. Therefore, GPEs are formed omnipresent in cells, covering the pores of electrode material particles, and even the pores of separators. As a result, different from ex situ formed GPEs, the in situ GPEs have no electrode/electrolyte contact problems. Functional GPEs are introduced as a more advanced form of GPEs, improving lithium-ion transference number or capturing transition metals released from electrode materials.

17.
Small ; 15(2): e1802228, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30387317

RESUMO

An oxygen reduction reaction (ORR) catalyst/support system is designed to have Pt nanoparticles nanoconfined in a nanodimensionally limited space. Holey crumpled reduced graphene oxide plates (hCR-rGO) are used as a carbon support for Pt loading. As expected from interparticular Pt-to-Pt distance of Pt-loaded hCR-rGO longer than that of Pt/C (Pt-loaded carbon black as a practical Pt catalyst), the durability of ORR electroactivity along cycles is improved by replacing the widely used carbon black with hCR-rGO. Unexpected morphological changes of Pt are electrochemically induced during repeated ORR processes. Spherical multifaceted Pt particles are evolved to {110}-dominant dendritic multipods. Nanoconfinement of a limited number of Pt within a nanodimensionally limited space is responsible for the morphological changes. The improved durability observed from Pt-loaded hCR-rGO originates from 1) dendritic pod structure of Pt exposing more active sites to reactants and 2) highly ORR-active Pt {110} planes dominant on the surface.

18.
Adv Sci (Weinh) ; 5(11): 1800851, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30479927

RESUMO

Highly porous thin films and nanostructure arrays are created by a simple process of selective dissolution of a water-soluble material, Sr3Al2O6. Heteroepitaxial nanocomposite films with self-separated phases of a target material and Sr3Al2O6 are first prepared by physical vapor deposition. NiO, ZnO, and Ni1- x Mg x O are used as the target materials. Only the Sr3Al2O6 phase in each nanocomposite film is selectively dissolved by dipping the film in water for 30 s at room temperature. This gentle and fast method minimizes damage to the remaining target materials and side reactions that can generate impurity phases. The morphologies and dimensions of the pores and nanostructures are controlled by the relative wettability of the separated phases on the growth substrates. The supercapacitor properties of the porous NiO films are enhanced compared to plain NiO films. The method can also be used to prepare porous films or nanostructure arrays of other oxides, metals, chalcogenides, and nitrides, as well as films or nanostructures with single-crystalline, polycrystalline, or amorphous nature.

19.
Nat Commun ; 9(1): 2924, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050036

RESUMO

High-theoretical capacity and low working potential make silicon ideal anode for lithium ion batteries. However, the large volume change of silicon upon lithiation/delithiation poses a critical challenge for stable battery operations. Here, we introduce an unprecedented design, which takes advantage of large deformation and ensures the structural stability of the material by developing a two-dimensional silicon nanosheet coated with a thin carbon layer. During electrochemical cycling, this carbon coated silicon nanosheet exhibits unique deformation patterns, featuring accommodation of deformation in the thickness direction upon lithiation, while forming ripples upon delithiation, as demonstrated by in situ transmission electron microscopy observation and chemomechanical simulation. The ripple formation presents a unique mechanism for releasing the cycling induced stress, rendering the electrode much more stable and durable than the uncoated counterparts. This work demonstrates a general principle as how to take the advantage of the large deformation materials for designing high capacity electrode.

20.
ACS Nano ; 12(2): 1739-1746, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29350526

RESUMO

We show that a high energy density can be achieved in a practical manner with freestanding electrodes without using conductive carbon, binders, and current collectors. We made and used a folded graphene composite electrode designed for a high areal capacity anode. The traditional thick graphene composite electrode, such as made by filtering graphene oxide to create a thin film and reducing it such as through chemical or thermal methods, has sluggish reaction kinetics. Instead, we have made and tested a thin composite film electrode that was folded several times using a water-assisted method; it provides a continuous electron transport path in the fold regions and introduces more channels between the folded layers, which significantly enhances the electron/ion transport kinetics. A fold electrode consisting of SnO2/graphene with high areal loading of 5 mg cm-2 has a high areal capacity of 4.15 mAh cm-2, well above commercial graphite anodes (2.50-3.50 mAh cm-2), while the thickness is maintained as low as ∼20 µm. The fold electrode shows stable cycling over 500 cycles at 1.70 mA cm-2 and improved rate capability compared to thick electrodes with the same mass loading but without folds. A full cell of fold electrode coupled with LiCoO2 cathode was assembled and delivered an areal capacity of 2.84 mAh cm-2 after 300 cycles. This folding strategy can be extended to other electrode materials and rechargeable batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...