Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 33(9-10): 529-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610749

RESUMO

Lubricin, a glycoprotein encoded by the proteoglycan 4 (PRG4) gene, is an essential boundary lubricant that reduces friction between articular cartilage surfaces. The loss of lubricin subsequent to joint injury plays a role in the pathogenesis of posttraumatic osteoarthritis. In this study, we describe the development and evaluation of an adeno-associated virus (AAV)-based PRG4 gene therapy intended to restore lubricin in injured joints. The green fluorescent protein (GFP) gene was inserted the PRG4 gene to facilitate tracing the distribution of the transgene product (AAV-PRG4-GFP) in vivo. Transduction efficiency of AAV-PRG4-GFP was evaluated in joint cells, and the conditioned medium containing secreted PRG4-GFP was used for shear loading/friction and viability tests. In vivo transduction of joint tissues following intra-articular injection of AAV-PRG4-GFP was confirmed in the mouse stifle joint in a surgical model of destabilization of the medial meniscus (DMM), and chondroprotective activity was tested in a rabbit anterior cruciate ligament transection (ACLT) model. In vitro studies showed that PRG4-GFP has lubricin-like cartilage-binding and antifriction properties. Significant cytoprotective effects were seen when cartilage was soaked in PRG4-GFP before cyclic shear loading (n = 3). Polymerase chain reaction and confocal microscopy confirmed the presence of PRG4-GFP DNA and protein, respectively, in a mouse DMM (n = 3 per group). In the rabbit ACLT model, AAV-PRG4-GFP gene therapy enhanced lubricin expression (p = 0.001 vs. AAV-GFP: n = 7-14) and protected the cartilage from degeneration (p = 0.014 vs. AAV-GFP: n = 9-10) when treatments were administered immediately postoperation, but efficacy was lost when treatment was delayed for 2 weeks. AAV-PRG4-GFP gene therapy protected cartilage from degeneration in a rabbit ACLT model; however, data from the ACLT model suggest that early intervention is essential for efficacy.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Dependovirus/genética , Terapia Genética , Camundongos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/terapia , Proteoglicanas/genética , Coelhos
2.
Spine J ; 21(6): 1021-1030, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610806

RESUMO

BACKGROUND: Mounting evidence that oxidative stress contributes to the pathogenesis of intervertebral disc (IVD) degeneration (IDD) suggests that therapies targeting oxidative stress may slow or prevent disease progression. PURPOSE: The objective of this study was to investigate the inhibitory effects of amobarbital (Amo) on the mitochondria of nucleus pulposus (NP) cells under tert-butyl hydrogen peroxide (tBHP)-induced oxidative stress or in NP tissues under oxidative stress from tissue injury as a means of identifying therapeutic targets for IDD. STUDY DESIGN/SETTING: We tested the effects inhibiting mitochondria, a major source of oxidants, with Amo in NP cells subjected to two different forms of insult: exposure to tBHP, and physical injury induced by disc transection. N-acetylcysteine (NAC), an antioxidant known to protect NP cells, was compared to the complex I inhibitor, Amo. METHODS: NP cells were pre-treated for 2 hours with Amo, NAC, or both, and then exposed to tBHP for 1 hour. Apoptosis, necrosis, and reactive oxygen species (ROS) production were assessed using confocal microscopy and fluorescent probes (Annexin V, propidium iodide, and MitoSox Red, respectively). The activation of mitogen-activated protein kinases (MAPKs) involved in oxidative stress responses were interrogated by confocal imaging of immunofluorescence stains using phospho-specific antibodies to extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK), and p38. Mitochondrial function was assessed by imaging JC-1 staining, a probe for membrane potential. RESULTS: Amo was modestly more protective than NAC by some measures, while both agents improved mitochondrial function and lowered tBHP-induced apoptosis, necrosis, and ROS production. Activation of MAPK by tBHP was significantly suppressed by both drugs. Physically injured IVDs were treated immediately after transection with Amo or NAC for 24 hours, and then stained with dihydroethidium (DHE), a fluorescent probe for ROS production. Immunofluorescence was used to track the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a transcription factor that induces the expression of antioxidant genes. Amo and NAC significantly reduced ROS production and increased Nrf2 expression. CONCLUSION: These findings suggest that the progression of IDD may be forestalled by Amo via protection of NP cells from oxidative stress following IVD injury. CLINICAL SIGNIFICANCE: This study will define the extent to which a novel, minimally invasive procedure targeting oxidative stress in NP cells can augment surgical interventions intended to retard IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Preparações Farmacêuticas , Amobarbital/metabolismo , Apoptose , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/prevenção & controle , Estresse Oxidativo , Preparações Farmacêuticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Int J Pharm ; 558: 225-230, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30654057

RESUMO

Postoperative pain is a common form of acute pain that has been treated commonly by local anesthetics through regional nerve blocking. In this study, a series of experiments were conducted using rats to investigate the pharmacokinetic, distribution, and efficacy of a temperature responsive hydrogel-based drug delivery device (PF-72) containing ropivacaine (0.75%) for extended relief of postoperative pain by allowing the prolonged release of ropivacaine. When the ropivacaine was administered using PF-72, its concentration-time curve (AUClast) and peak concentration (Cmax) were 577.0 h*ng/mL and 271.9 ng/mL, respectively. In contrast when the ropivacaine solution was administered using saline solution, its AUClast and Cmax were 982.8 h*ng/mL and 423.6 ng/mL, respectively. In the tissue distribution study, the peak concentration and mean area under the curve of the ropivacaine in injection area (target tissue) were found about 2-fold higher in the case of PF-72 compared with the case of conventional ropivacaine solution. These results clearly demonstrate the capability of PF-72 hydrogel to retain the ropivacaine at the injection site for an extended period. Effective extended (at least 24 h) pain relief of ropivacaine administered using PF-72 was found in the pharmacodynamic study of prolonged analgesic effect. The results of this study indicated that local drug delivery by PF-72 hydrogel formulation may be an effective method to achieve extended relief of pain. Other advantages of ropivacaine administration using PF-72 include reduced systemic side effects and high localization of a drug in target tissues.


Assuntos
Anestésicos Locais/administração & dosagem , Hidrogéis/administração & dosagem , Dor Pós-Operatória/tratamento farmacológico , Ropivacaina/administração & dosagem , Ferida Cirúrgica/tratamento farmacológico , Anestésicos Locais/química , Anestésicos Locais/farmacocinética , Animais , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Masculino , Ratos Sprague-Dawley , Ropivacaina/química , Ropivacaina/farmacocinética , Temperatura , Distribuição Tecidual
4.
Adv Healthc Mater ; 8(2): e1801236, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30556348

RESUMO

Tissue engineering potentially offers new treatments for disorders of the temporomandibular joint which frequently afflict patients. Damage or disease in this area adversely affects masticatory function and speaking, reducing patients' quality of life. Effective treatment options for patients suffering from severe temporomandibular joint disorders are in high demand because surgical options are restricted to removal of damaged tissue or complete replacement of the joint with prosthetics. Tissue engineering approaches for the temporomandibular joint are a promising alternative to the limited clinical treatment options. However, tissue engineering is still a developing field and only in its formative years for the temporomandibular joint. This review outlines the anatomical and physiological characteristics of the temporomandibular joint, clinical management of temporomandibular joint disorder, and current perspectives in the tissue engineering approach for the temporomandibular joint disorder. The tissue engineering perspectives have been categorized according to the primary structures of the temporomandibular joint: the disc, the mandibular condyle, and the glenoid fossa. In each section, contemporary approaches in cellularization, growth factor selection, and scaffold fabrication strategies are reviewed in detail along with their achievements and challenges.


Assuntos
Transtornos da Articulação Temporomandibular/cirurgia , Articulação Temporomandibular , Engenharia Tecidual/métodos , Animais , Cavidade Glenoide/anatomia & histologia , Cavidade Glenoide/citologia , Cavidade Glenoide/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Côndilo Mandibular/anatomia & histologia , Côndilo Mandibular/citologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Articulação Temporomandibular/anatomia & histologia , Articulação Temporomandibular/fisiologia , Disco da Articulação Temporomandibular/anatomia & histologia , Disco da Articulação Temporomandibular/citologia , Transtornos da Articulação Temporomandibular/diagnóstico , Transtornos da Articulação Temporomandibular/etiologia , Alicerces Teciduais
5.
J Orthop Res ; 36(11): 3004-3012, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29802732

RESUMO

Axial compressive loads whose direction changes along the spinal curvature (so called compressive follower loads (CFLs)) was postulated as a normal physiological load in the lumbar spine in the literature. Computational analyses were conducted in this study using finite element and optimization models of the spinal system incorporating 244 fascicles of back muscles. It was feasible to find optimum solutions for spinal muscle forces generating CFLs in the lumbar spine in 3-D postures of neutral standing, flexion 40°, extension 10°, axial rotation 10°, or lateral bending 30°. FE analyses demonstrated that the lumbar spine can be in a stable condition not under all CFL generating muscle forces but under those producing CFLs along a curve parallel to the spinal curvature located in the vicinity of the base spinal curve constructed by connecting the geometrical centers of the vertebral bodies. It was also possible to estimate the stable range of the relative location of such CFL curve to the base spinal curve. These results suggest that the lumbar spine in various 3-D postures can be stabilized by spinal muscles that generate CFLs in the spine, which at least in part supports the hypothesis of CFLs as a physiological load in the lumbar spine. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3004-3012, 2018.


Assuntos
Músculos do Dorso/fisiologia , Vértebras Lombares/fisiologia , Modelos Biológicos , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Suporte de Carga
6.
J Orthop Res ; 36(9): 2439-2449, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29667227

RESUMO

Our group employed the mouse closed intra-articular fracture (IAF) model to test the hypothesis that the innate immune system plays a role in initiating synovitis and post-traumatic osteoarthritis (PTOA) in fractured joints. A transgenic strategy featuring knockout of the receptor for advanced glycation end-products (RAGE -/- ) was pursued. The 42 and 84 mJ impacts used to create fractures were in the range previously reported to cause PTOA at 60 days post-fracture. MicroCT (µCT) was used to assess fracture patterns and epiphyseal and metaphyseal bone loss at 30 and 60 days post-fracture. Cartilage degeneration, synovitis, and matrix metalloproteinase (MMP-3, -13) expression were evaluated by histologic analyses. In wild-type mice, µCT imaging showed that 84 mJ impacts led to significant bone loss at 30 days (p < 0.05), but recovered to normal at 60 days. Bone losses did not occur in RAGE-/- mice. Synovitis was significantly elevated in 84 mJ impact wild-type mice at both endpoints (30 day, p = 0.001; 60 day, p = 0.05), whereas in RAGE-/- mice synovitis was elevated only at 30 days (p = 0.02). Mankin scores were slightly elevated in both mouse strains at 30 days, but not at 60 days. Immunohistochemistry revealed significant fracture-related increases in MMP-3 and -13 expression at 30 days (p < 0.05), with no significant difference between genotypes. These findings indicated that while RAGE -/- accelerated recovery from fracture and diminished synovitis, arthritic changes were temporary and too modest to detect an effect on the pathogenesis of PTOA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2439-2449, 2018.


Assuntos
Densidade Óssea , Receptor para Produtos Finais de Glicação Avançada/genética , Sinovite/metabolismo , Fraturas da Tíbia/patologia , Animais , Cartilagem Articular/patologia , Modelos Animais de Doenças , Fraturas Intra-Articulares , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Microtomografia por Raio-X
7.
J Orthop Res ; 35(9): 1966-1972, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27813166

RESUMO

Serious meniscus injuries seldom heal and increase the risk for knee osteoarthritis; thus, there is a need to develop new reparative therapies. In that regard, stimulating tissue regeneration by autologous stem/progenitor cells has emerged as a promising new strategy. We showed previously that migratory chondrogenic progenitor cells (CPCs) were recruited to injured cartilage, where they showed a capability in situ tissue repair. Here, we tested the hypothesis that the meniscus contains a similar population of regenerative cells. Explant studies revealed that migrating cells were mainly confined to the red zone in normal menisci: However, these cells were capable of repopulating defects made in the white zone. In vivo, migrating cell numbers increased dramatically in damaged meniscus. Relative to non-migrating meniscus cells, migrating cells were more clonogenic, overexpressed progenitor cell markers, and included a larger side population. Gene expression profiling showed that the migrating population was more similar to CPCs than other meniscus cells. Finally, migrating cells equaled CPCs in chondrogenic potential, indicating a capacity for repair of the cartilaginous white zone of the meniscus. These findings demonstrate that, much as in articular cartilage, injuries to the meniscus mobilize an intrinsic progenitor cell population with strong reparative potential. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1966-1972, 2017.


Assuntos
Células-Tronco Adultas/fisiologia , Meniscos Tibiais/citologia , Regeneração , Animais , Bovinos , Movimento Celular , Cabras , Meniscos Tibiais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...