Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 654: 123951, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38423154

RESUMO

Previous studies have demonstrated the effects of theranostic agents on atherosclerotic plaques. However, there is limited information on targeted theranostics for photodynamic treatment of atherosclerosis. This study aimed to develop a macrophage-mannose-receptor-targeted photoactivatable nanoagent that regulates atherosclerosis and to evaluate its efficacy as well as safety in atherosclerotic mice. We synthesised and characterised D-mannosamine (MAN)-polyethylene glycol (PEG)-chlorin e6 (Ce6) for phototheranostic treatment of atherosclerosis. The diagnostic and therapeutic effects of MAN-PEG-Ce6 were investigated using the atherosclerotic mouse model. The hydrophobic Ce6 photosensitiser was surrounded by the hydrophilic MAN-PEG outer shell of the self-assembled nanostructure under aqueous conditions. The MAN-PEG-Ce6 was specifically internalised in macrophage-derived foam cells through receptor-mediated endocytosis. After laser irradiation, the MAN-PEG-Ce6 markedly increased singlet oxygen generation. Intravital imaging and immunohistochemistry analyses verified MAN-PEG-Ce6's specificity to plaque macrophages and its notable anti-inflammatory impact by effectively reducing mannose-receptor-positive macrophages. The toxicity assay showed that MAN-PEG-Ce6 had negligible effects on the biochemical profile and structural damage in the skin and organs. Targeted photoactivation with MAN-PEG-Ce6 thus has the potential to rapidly reduce macrophage-derived inflammatory responses in atheroma and present favourable toxicity profiles, making it a promising approach for both imaging and treatment of atherosclerosis.


Assuntos
Aterosclerose , Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Animais , Camundongos , Fotoquimioterapia/métodos , Manose , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Polietilenoglicóis/química , Macrófagos , Aterosclerose/diagnóstico por imagem , Aterosclerose/tratamento farmacológico , Porfirinas/química , Linhagem Celular Tumoral
2.
Arterioscler Thromb Vasc Biol ; 43(7): 1295-1307, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37199160

RESUMO

BACKGROUND: Autofluorescence lifetime (AFL) imaging, a robust technique that enables label-free molecular investigation of biological tissues, is being introduced into the field of cardiovascular diagnostics. However, detailed AFL characteristics of coronary arteries remain elusive and there is a lack of methodology enabling such characterization. METHODS: We developed multispectral fluorescence lifetime imaging microscopy (FLIM) based on analog-mean-delay. Freshly sectioned coronary arteries and atheromas, harvested from 5 swine models, were imaged using FLIM and stained to label lipids, macrophages, collagen, and smooth muscle cells. The components were quantitated from digitized histological images and compared with the corresponding FLIM. Multispectral AFL parameters derived from 2 different spectral bands (390 nm and 450 nm) were analyzed. RESULTS: FLIM provided a wide field-of-view, high-resolution AFL imaging of frozen sections. Principal compositions of coronary arteries, such as tunica media, tunica adventitia, elastic laminas, smooth muscle cell-enriched fibrous plaque, lipid-rich core, and foamy macrophages, were well visualized in FLIM images and were found to have each different AFL spectra. In particular, proatherogenic components including lipids and foamy macrophages exhibited significantly different AFL values compared with plaque-stabilizing collagen- or smooth muscle cell-enriched tissues (P<0.0001). Pairwise comparisons showed that each composition was distinguishable from another by the difference in multispectral AFL parameters. Pixel-level analysis based on coregistered FLIM-histology dataset showed that each component of atherosclerosis (lipids, macrophages, collagen, and smooth muscle cells) had distinct correlation pattern with AFL parameters. Random forest regressors trained with the dataset allowed automated, simultaneous visualization of the key atherosclerotic components with high accuracy (r>0.87). CONCLUSIONS: FLIM provided detailed pixel-level AFL investigation of the complex composition of coronary artery and atheroma. Our FLIM strategy enabling an automated, comprehensive visualization of multiple plaque components from unlabeled sections will be highly useful to efficiently evaluate ex vivo samples without the need for histological staining and analysis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Suínos , Placa Aterosclerótica/patologia , Microscopia , Aterosclerose/patologia , Colágeno , Lipídeos/análise
3.
J Nanobiotechnology ; 19(1): 338, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689768

RESUMO

BACKGROUND: Photoactivation targeting macrophages has emerged as a therapeutic strategy for atherosclerosis, but limited targetable ability of photosensitizers to the lesions hinders its applications. Moreover, the molecular mechanistic insight to its phototherapeutic effects on atheroma is still lacking. Herein, we developed a macrophage targetable near-infrared fluorescence (NIRF) emitting phototheranostic agent by conjugating dextran sulfate (DS) to chlorin e6 (Ce6) and estimated its phototherapeutic feasibility in murine atheroma. Also, the phototherapeutic mechanisms of DS-Ce6 on atherosclerosis were investigated. RESULTS: The phototheranostic agent DS-Ce6 efficiently internalized into the activated macrophages and foam cells via scavenger receptor-A (SR-A) mediated endocytosis. Customized serial optical imaging-guided photoactivation of DS-Ce6 by light illumination reduced both atheroma burden and inflammation in murine models. Immuno-fluorescence and -histochemical analyses revealed that the photoactivation of DS-Ce6 produced a prominent increase in macrophage-associated apoptotic bodies 1 week after laser irradiation and induced autophagy with Mer tyrosine-protein kinase expression as early as day 1, indicative of an enhanced efferocytosis in atheroma. CONCLUSION: Imaging-guided DS-Ce6 photoactivation was able to in vivo detect inflammatory activity in atheroma as well as to simultaneously reduce both plaque burden and inflammation by harmonic contribution of apoptosis, autophagy, and lesional efferocytosis. These results suggest that macrophage targetable phototheranostic nanoagents will be a promising theranostic strategy for high-risk atheroma.


Assuntos
Aterosclerose/metabolismo , Células Espumosas/metabolismo , Fármacos Fotossensibilizantes , Nanomedicina Teranóstica/métodos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Raios Infravermelhos , Masculino , Camundongos , Camundongos Knockout , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/farmacologia , Células RAW 264.7
4.
Biomed Opt Express ; 12(9): 5452-5469, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34692194

RESUMO

Optical microscopy has been widely used in biomedical research as it provides photophysical and photochemical information of the target in subcellular spatial resolution without requiring physical contact with the specimen. To obtain a deeper understanding of biological phenomena, several efforts have been expended to combine such optical imaging modalities into a single microscope system. However, the use of multiple light sources and detectors through separated beam paths renders previous systems extremely complicated or slow for in vivo imaging. Herein, we propose a novel high-speed multimodal optical microscope system that simultaneously visualizes five different microscopic contrasts, i.e., two-photon excitation, second-harmonic generation, backscattered light, near-infrared fluorescence, and fluorescence lifetime, using a single femtosecond pulsed laser. Our proposed system can visualize five modal images with a frame rate of 3.7 fps in real-time, thereby providing complementary optical information that enhances both structural and functional contrasts. This highly photon-efficient multimodal microscope system enables various properties of biological tissues to be assessed.

5.
Theranostics ; 11(18): 8874-8893, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522216

RESUMO

Rationale: Inflammation plays a pivotal role in the pathogenesis of the acute coronary syndrome. Detecting plaques with high inflammatory activity and specifically treating those lesions can be crucial to prevent life-threatening cardiovascular events. Methods: Here, we developed a macrophage mannose receptor (MMR)-targeted theranostic nanodrug (mannose-polyethylene glycol-glycol chitosan-deoxycholic acid-cyanine 7-lobeglitazone; MMR-Lobe-Cy) designed to identify inflammatory activity as well as to deliver peroxisome proliferator-activated gamma (PPARγ) agonist, lobeglitazone, specifically to high-risk plaques based on the high mannose receptor specificity. The MMR-Lobe-Cy was intravenously injected into balloon-injured atheromatous rabbits and serial in vivo optical coherence tomography (OCT)-near-infrared fluorescence (NIRF) structural-molecular imaging was performed. Results: One week after MMR-Lobe-Cy administration, the inflammatory NIRF signals in the plaques notably decreased compared to the baseline whereas the signals in saline controls even increased over time. In accordance with in vivo imaging findings, ex vivo NIRF signals on fluorescence reflectance imaging (FRI) and plaque inflammation by immunostainings significantly decreased compared to oral lobeglitazone group or saline controls. The anti-inflammatory effect of MMR-Lobe-Cy was mediated by inhibition of TLR4/NF-κB pathway. Furthermore, acute resolution of inflammation altered the inflamed plaque into a stable phenotype with less macrophages and collagen-rich matrix. Conclusion: Macrophage targeted PPARγ activator labeled with NIRF rapidly stabilized the inflamed plaques in coronary sized artery, which could be quantitatively assessed using intravascular OCT-NIRF imaging. This novel theranostic approach provides a promising theranostic strategy for high-risk coronary plaques.


Assuntos
Macrófagos/fisiologia , Placa Aterosclerótica/diagnóstico , Medicina de Precisão/métodos , Síndrome Coronariana Aguda/diagnóstico , Animais , Artérias/metabolismo , Aterosclerose/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Fluorescência , Verde de Indocianina/administração & dosagem , Inflamação/diagnóstico , Macrófagos/metabolismo , Masculino , Receptor de Manose/metabolismo , Modelos Animais , Imagem Molecular/métodos , Imagem Óptica/métodos , PPAR gama/agonistas , PPAR gama/metabolismo , Placa Aterosclerótica/patologia , Pirimidinas/uso terapêutico , Coelhos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tiazolidinedionas/uso terapêutico , Tomografia de Coerência Óptica/métodos
6.
Eur Heart J ; 42(19): 1883-1895, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33462618

RESUMO

AIMS: Emotional stress is associated with future cardiovascular events. However, the mechanistic linkage of brain emotional neural activity with acute plaque instability is not fully elucidated. We aimed to prospectively estimate the relationship between brain amygdalar activity (AmygA), arterial inflammation (AI), and macrophage haematopoiesis (HEMA) in acute myocardial infarction (AMI) as compared with controls. METHODS AND RESULTS: 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) imaging was performed within 45 days of the index episode in 62 patients (45 with AMI, mean 60.0 years, 84.4% male; 17 controls, mean 59.6 years, 76.4% male). In 10 patients of the AMI group, serial 18F-FDG-PET/CT imaging was performed after 6 months to estimate the temporal changes. The signals were compared using a customized 3D-rendered PET reconstruction. AmygA [target-to-background ratio (TBR), mean ± standard deviation: 0.65 ± 0.05 vs. 0.60 ± 0.05; P = 0.004], carotid AI (TBR: 2.04 ± 0.39 vs. 1.81 ± 0.25; P = 0.026), and HEMA (TBR: 2.60 ± 0.38 vs. 2.22 ± 0.28; P < 0.001) were significantly higher in AMI patients compared with controls. AmygA correlated significantly with those of the carotid artery (r = 0.350; P = 0.005), aorta (r = 0.471; P < 0.001), and bone marrow (r = 0.356; P = 0.005). Psychological stress scales (PHQ-9 and PSS-10) and AmygA assessed by PET/CT imaging correlated well (P < 0.001). Six-month after AMI, AmygA, carotid AI, and HEMA decreased to a level comparable with the controls. CONCLUSION: AmygA, AI, and HEMA were concordantly enhanced in patients with AMI, showing concurrent dynamic changes over time. These results raise the possibility that stress-associated neurobiological activity is linked with acute plaque instability via augmented macrophage activity and could be a potential therapeutic target for plaque inflammation in AMI.


Assuntos
Fluordesoxiglucose F18 , Placa Aterosclerótica , Feminino , Humanos , Macrófagos , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Compostos Radiofarmacêuticos
8.
JACC Basic Transl Sci ; 6(12): 948-960, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024500

RESUMO

Coronary plaque destabilization involves alterations in microstructure and biochemical composition; however, no imaging approach allows such comprehensive characterization. Herein, the authors demonstrated a simultaneous microstructural and biochemical assessment of high-risk plaques in the coronary arteries in a beating heart using a fully integrated optical coherence tomography and fluorescence lifetime imaging (FLIm). It was found that plaque components such as lipids, macrophages, lipids+macrophages, and fibrotic tissues had unique fluorescence lifetime signatures that were distinguishable using multispectral FLIm. Because FLIm yielded massive biochemical readouts, the authors incorporated machine learning framework into FLIm, and ultimately, their approach enabled an automated, quantitative imaging of multiple key components relevant for plaque destabilization.

9.
Sci Rep ; 10(1): 9248, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514084

RESUMO

Micro-optical coherence tomography (µOCT) is a novel imaging approach enabling visualization of the microstructures of biological tissues at a cellular or sub-cellular level. However, it has been challenging to develop a miniaturized flexible endoscopic µOCT probe allowing helical luminal scanning. In this study, we built a flexible endoscopic µOCT probe with an outer diameter of 1.2 mm, which acquires three-dimensional images of the arterial microstructures via helical scanning with an axial and lateral resolutions of 1.83 µm and 3.38 µm in air, respectively. Furthermore, the depth of focus of the µOCT imaging probe was extended two-fold using a binary phase spatial filter. We demonstrated that the present endoscopic µOCT could image cellular level features of a rabbit artery with high-risk atheroma and a bioresorbable scaffold-implanted swine coronary artery. This highly-translatable endoscopic µOCT will be a useful tool for investigating coronary artery disease and stent biology.


Assuntos
Artérias/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Endoscopia , Fenômenos Mecânicos , Microtecnologia/métodos , Tomografia de Coerência Óptica/métodos , Animais , Artérias/citologia , Calcinose/complicações , Vasos Coronários/citologia , Placa Aterosclerótica/complicações , Placa Aterosclerótica/diagnóstico por imagem , Coelhos , Risco , Suínos
10.
Sci Rep ; 8(1): 14561, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267024

RESUMO

Comprehensive imaging of both the structural and biochemical characteristics of atherosclerotic plaque is essential for the diagnosis and study of coronary artery disease because both a plaque's morphology and its biochemical composition affect the level of risk it poses. Optical coherence tomography (OCT) and fluorescence lifetime imaging (FLIm) are promising optical imaging methods for characterizing coronary artery plaques morphologically and biochemically, respectively. In this study, we present a hybrid intravascular imaging device, including a custom-built OCT/FLIm system, a hybrid optical rotary joint, and an imaging catheter, to visualize the structure and biochemical composition of the plaque in an atherosclerotic rabbit artery in vivo. Especially, the autofluorescence lifetime of the endogenous tissue molecules can be used to characterize the biochemical composition; thus no exogenous contrast agent is required. Also, the physical properties of the imaging catheter and the imaging procedures are similar to those already used clinically, facilitating rapid translation into clinical use. This new intravascular imaging catheter can open up new opportunities for clinicians and researchers to investigate and diagnose coronary artery disease by simultaneously providing tissue microstructure and biochemical composition data in vivo without the use of exogenous contrast agent.


Assuntos
Aorta/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Animais , Catéteres , Desenho de Equipamento , Imagem Multimodal/instrumentação , Imagem Óptica/instrumentação , Coelhos , Tomografia de Coerência Óptica/instrumentação
11.
Biomed Opt Express ; 9(4): 1930-1947, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29675330

RESUMO

The pathophysiological progression of chronic diseases, including atherosclerosis and cancer, is closely related to compositional changes in biological tissues containing endogenous fluorophores such as collagen, elastin, and NADH, which exhibit strong autofluorescence under ultraviolet excitation. Fluorescence lifetime imaging (FLIm) provides robust detection of the compositional changes by measuring fluorescence lifetime, which is an inherent property of a fluorophore. In this paper, we present a dual-modality system combining a multispectral analog-mean-delay (AMD) FLIm and a high-speed swept-source optical coherence tomography (OCT) to simultaneously visualize the cross-sectional morphology and biochemical compositional information of a biological tissue. Experiments using standard fluorescent solutions showed that the fluorescence lifetime could be measured with a precision of less than 40 psec using the multispectral AMD-FLIm without averaging. In addition, we performed ex vivo imaging on rabbit iliac normal-looking and atherosclerotic specimens to demonstrate the feasibility of the combined FLIm-OCT system for atherosclerosis imaging. We expect that the combined FLIm-OCT will be a promising next-generation imaging technique for diagnosing atherosclerosis and cancer due to the advantages of the proposed label-free high-precision multispectral lifetime measurement.

13.
Theranostics ; 8(1): 45-60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290792

RESUMO

Rationale: Atherosclerotic plaque is a chronic inflammatory disorder involving lipid accumulation within arterial walls. In particular, macrophages mediate plaque progression and rupture. While PPARγ agonist is known to have favorable pleiotropic effects on atherogenesis, its clinical application has been very limited due to undesirable systemic effects. We hypothesized that the specific delivery of a PPARγ agonist to inflamed plaques could reduce plaque burden and inflammation without systemic adverse effects. Methods: Herein, we newly developed a macrophage mannose receptor (MMR)-targeted biocompatible nanocarrier loaded with lobeglitazone (MMR-Lobe), which is able to specifically activate PPARγ pathways within inflamed high-risk plaques, and investigated its anti-atherogenic and anti-inflammatory effects both in in vitro and in vivo experiments. Results: MMR-Lobe had a high affinity to macrophage foam cells, and it could efficiently promote cholesterol efflux via LXRα-, ABCA1, and ABCG1 dependent pathways, and inhibit plaque protease expression. Using in vivo serial optical imaging of carotid artery, MMR-Lobe markedly reduced both plaque burden and inflammation in atherogenic mice without undesirable systemic effects. Comprehensive analysis of en face aorta by ex vivo imaging and immunostaining well corroborated the in vivo findings. Conclusion: MMR-Lobe was able to activate PPARγ pathways within high-risk plaques and effectively reduce both plaque burden and inflammation. This novel targetable PPARγ activation in macrophages could be a promising therapeutic strategy for high-risk plaques.


Assuntos
PPAR gama/metabolismo , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Imagem Óptica , PPAR gama/agonistas , Placa Aterosclerótica/tratamento farmacológico , Pirimidinas/uso terapêutico , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/uso terapêutico
14.
Opt Lett ; 42(3): 379-382, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146481

RESUMO

Micro-optical coherence tomography (µOCT) is an advanced imaging technique that acquires a three-dimensional microstructure of biological samples with a high spatial resolution, up to 1 µm, by using a broadband light source and a high numerical aperture (NA) lens. As high NA produces a short depth of focus (DOF), extending the DOF is necessary to obtain a reasonable imaging depth. However, due to the complexity of optics and the limited space, it has been challenging to fabricate endoscopic µOCT, which is essential for clinical translation. Here, we report an endoscopic µOCT probe with an extended DOF by using a binary phase spatial filter. The imaging results from latex beads demonstrated that the µOCT probe achieved an axial resolution of 2.49 µm and a lateral resolution of 2.59 µm with a DOF extended by a factor of 2. The feasibility of clinical use was demonstrated by ex vivo imaging of the rabbit iliac artery.


Assuntos
Endoscopia/instrumentação , Microtecnologia/instrumentação , Tomografia de Coerência Óptica/instrumentação , Animais , Desenho de Equipamento , Artéria Ilíaca/diagnóstico por imagem , Coelhos
15.
Biomed Opt Express ; 7(12): 4847-4858, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28018710

RESUMO

While high-speed intracoronary optical coherence tomography (OCT) provides three-dimensional (3D) visualization of coronary arteries in vivo, imaging speeds remain insufficient to avoid motion artifacts induced by heartbeat, limiting the clinical utility of OCT. In this paper, we demonstrate development of a high-speed intracoronary OCT system (frame rate: 500 frames/s, pullback speed: 100 mm/s) along with prospective electrocardiogram (ECG) triggering technology, which enabled volumetric imaging of long coronary segments within a single cardiac cycle (70 mm pullback in 0.7 s) with minimal cardiac motion artifact. This technology permitted detailed visualization of 3D architecture of the coronary arterial wall of a swine in vivo and fine structure of the implanted stent.

16.
J Biomed Opt ; 21(7): 75004, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27391375

RESUMO

Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the internal structures of walls of coronary arteries in vivo. However, accurate characterization of atherosclerotic plaques with gray-scale IV-OCT images is often limited by various intrinsic artifacts. In this study, we present an algorithm for characterizing lipid-rich plaques with a spectroscopic OCT technique based on a Gaussian center of mass (GCOM) metric. The GCOM metric, which reflects the absorbance properties of lipids, was validated using a lipid phantom. In addition, the proposed characterization method was successfully demonstrated in vivo using an atherosclerotic rabbit model and was found to have a sensitivity and specificity of 94.3% and 76.7% for lipid classification, respectively.


Assuntos
Algoritmos , Aterosclerose/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Lipídeos/química , Placa Aterosclerótica/diagnóstico por imagem , Tomografia de Coerência Óptica , Animais , Doença da Artéria Coronariana/diagnóstico por imagem , Modelos Animais de Doenças , Coelhos , Reprodutibilidade dos Testes
18.
Med Phys ; 43(4): 1662, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27036565

RESUMO

PURPOSE: Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the microstructure of arterial walls in vivo. IV-OCT enables the clinician to clearly observe and accurately measure stent apposition and neointimal coverage of coronary stents, which are associated with side effects such as in-stent thrombosis. In this study, the authors present an algorithm for quantifying stent apposition and neointimal coverage by automatically detecting lumen contours and stent struts in IV-OCT images. METHODS: The algorithm utilizes OCT intensity images and their first and second gradient images along the axial direction to detect lumen contours and stent strut candidates. These stent strut candidates are classified into true and false stent struts based on their features, using an artificial neural network with one hidden layer and ten nodes. After segmentation, either the protrusion distance (PD) or neointimal thickness (NT) for each strut is measured automatically. In randomly selected image sets covering a large variety of clinical scenarios, the results of the algorithm were compared to those of manual segmentation by IV-OCT readers. RESULTS: Stent strut detection showed a 96.5% positive predictive value and a 92.9% true positive rate. In addition, case-by-case validation also showed comparable accuracy for most cases. High correlation coefficients (R > 0.99) were observed for PD and NT between the algorithmic and the manual results, showing little bias (0.20 and 0.46 µm, respectively) and a narrow range of limits of agreement (36 and 54 µm, respectively). In addition, the algorithm worked well in various clinical scenarios and even in cases with a low level of stent malapposition and neointimal coverage. CONCLUSIONS: The presented automatic algorithm enables robust and fast detection of lumen contours and stent struts and provides quantitative measurements of PD and NT. In addition, the algorithm was validated using various clinical cases to demonstrate its reliability. Therefore, this technique can be effectively utilized for clinical trials on stent-related side effects, including in-stent thrombosis and in-stent restenosis.


Assuntos
Vasos Coronários/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neointima/diagnóstico por imagem , Stents , Tomografia de Coerência Óptica , Automação , Humanos , Redes Neurais de Computação , Fatores de Tempo , Interface Usuário-Computador
19.
Sci Rep ; 6: 22608, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26948523

RESUMO

Macrophages mediate atheroma expansion and disruption, and denote high-risk arterial plaques. Therefore, they are substantially gaining importance as a diagnostic imaging target for the detection of rupture-prone plaques. Here, we developed an injectable near-infrared fluorescence (NIRF) probe by chemically conjugating thiolated glycol chitosan with cholesteryl chloroformate, NIRF dye (cyanine 5.5 or 7), and maleimide-polyethylene glycol-mannose as mannose receptor binding ligands to specifically target a subset of macrophages abundant in high-risk plaques. This probe showed high affinity to mannose receptors, low toxicity, and allowed the direct visualization of plaque macrophages in murine carotid atheroma. After the scale-up of the MMR-NIRF probe, the administration of the probe facilitated in vivo intravascular imaging of plaque inflammation in coronary-sized vessels of atheromatous rabbits using a custom-built dual-modal optical coherence tomography (OCT)-NIRF catheter-based imaging system. This novel imaging approach represents a potential imaging strategy enabling the identification of high-risk plaques in vivo and holds promise for future clinical implications.


Assuntos
Aterosclerose/diagnóstico por imagem , Lectinas Tipo C/análise , Macrófagos/metabolismo , Lectinas de Ligação a Manose/análise , Imagem Óptica/métodos , Receptores de Superfície Celular/análise , Animais , Masculino , Receptor de Manose , Camundongos Endogâmicos C57BL , Coelhos
20.
Eur Heart J ; 37(37): 2833-2844, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26787442

RESUMO

AIMS: Inflammation plays essential role in development of plaque disruption and coronary stent-associated complications. This study aimed to examine whether intracoronary dual-modal optical coherence tomography (OCT)-near-infrared fluorescence (NIRF) structural-molecular imaging with indocyanine green (ICG) can estimate inflammation in swine coronary artery. METHODS AND RESULTS: After administration of clinically approved NIRF-enhancing ICG (2.0 mg/kg) or saline, rapid coronary imaging (20 mm/s pullback speed) using a fully integrated OCT-NIRF catheter was safely performed in 12 atheromatous Yucatan minipigs and in 7 drug-eluting stent (DES)-implanted Yorkshire pigs. Stronger NIRF activity was identified in OCT-proven high-risk plaque compared to normal or saline-injected controls (P = 0.0016), which was validated on ex vivo fluorescence reflectance imaging. In vivo plaque target-to-background ratio (pTBR) was much higher in inflamed lipid-rich plaque compared to fibrous plaque (P < 0.0001). In vivo and ex vivo peak pTBRs correlated significantly (P < 0.0022). In vitro cellular ICG uptake and histological validations corroborated the OCT-NIRF findings in vivo. Indocyanine green colocalization with macrophages and lipids of human plaques was confirmed with autopsy atheroma specimens. Two weeks after DES deployment, OCT-NIRF imaging detected strong NIRF signals along stent struts, which was significantly higher than baseline (P = 0.0156). Histologically, NIRF signals in peri-strut tissue co-localized well with macrophages. CONCLUSION: The OCT-NIRF imaging with a clinical dose of ICG was feasible to accurately assess plaque inflammation and DES-related inflammation in a beating coronary artery. This highly translatable dual-modal molecular-structural imaging strategy could be relevant for clinical intracoronary estimation of high-risk plaques and DES biology.


Assuntos
Stents , Animais , Doença da Artéria Coronariana , Vasos Coronários , Stents Farmacológicos , Humanos , Verde de Indocianina , Inflamação , Imagem Molecular , Suínos , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...