Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (207)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801255

RESUMO

Efficient methods for the extraction of features of interest remain one of the biggest challenges for the interpretation of cryo-electron tomograms. Various automated approaches have been proposed, many of which work well for high-contrast datasets where the features of interest can be easily detected and are clearly separated from one another. Our inner ear stereocilia cryo-electron tomographic datasets are characterized by a dense array of hexagonally packed actin filaments that are frequently cross-connected. These features make automated segmentation very challenging, further aggravated by the high-noise environment of cryo-electron tomograms and the high complexity of the densely packed features. Using prior knowledge about the actin bundle organization, we have placed layers of a highly simplified ball-and-stick actin model to first obtain a global fit to the density map, followed by regional and local adjustments of the model. We show that volumetric model building not only allows us to deal with the high complexity, but also provides precise measurements and statistics about the actin bundle. Volumetric models also serve as anchoring points for local segmentation, such as in the case of the actin-actin cross connectors. Volumetric model building, particularly when further augmented by computer-based automated fitting approaches, can be a powerful alternative when conventional automated segmentation approaches are not successful.


Assuntos
Actinas , Microscopia Crioeletrônica , Microscopia Crioeletrônica/métodos , Actinas/química , Tomografia com Microscopia Eletrônica/métodos , Animais , Orelha Interna/diagnóstico por imagem , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura
2.
Elife ; 122023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719173

RESUMO

The inner ear has a rich population of pericytes, a multi-functional mural cell essential for sensory hair cell heath and normal hearing. However, the mechanics of how pericytes contribute to the homeostasis of the auditory vascular-neuronal complex in the spiral ganglion are not yet known. In this study, using an inducible and conditional pericyte depletion mouse (PDGFRB-CreERT2; ROSA26iDTR) model, we demonstrate, for the first time, that pericyte depletion causes loss of vascular volume and spiral ganglion neurons (SGNs) and adversely affects hearing sensitivity. Using an in vitro trans-well co-culture system, we show pericytes markedly promote neurite and vascular branch growth in neonatal SGN explants and adult SGNs. The pericyte-controlled neural growth is strongly mediated by pericyte-released exosomes containing vascular endothelial growth factor-A (VEGF-A). Treatment of neonatal SGN explants or adult SGNs with pericyte-derived exosomes significantly enhances angiogenesis, SGN survival, and neurite growth, all of which were inhibited by a selective blocker of VEGF receptor 2 (Flk1). Our study demonstrates that pericytes in the adult ear are critical for vascular stability and SGN health. Cross-talk between pericytes and SGNs via exosomes is essential for neuronal and vascular health and normal hearing.


Assuntos
Pericitos , Gânglio Espiral da Cóclea , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular , Neurônios/fisiologia , Neuritos/fisiologia
3.
JCI Insight ; 6(8)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33690221

RESUMO

Millions of people are affected by hearing loss. Hearing loss is frequently caused by noise or aging and often associated with loss of pericytes. Pericytes populate the small vessels in the adult cochlea. However, their role in different types of hearing loss is largely unknown. Using an inducible and conditional pericyte depletion mouse model and noise-exposed mouse model, we show that loss of pericytes leads to marked changes in vascular structure, in turn leading to vascular degeneration and hearing loss. In vitro, using advanced tissue explants from pericyte fluorescence reporter models combined with exogenous donor pericytes, we show that pericytes, signaled by VEGF isoform A165 (VEGFA165), vigorously drive new vessel growth in both adult and neonatal mouse inner ear tissue. In vivo, the delivery of an adeno-associated virus serotype 1-mediated (AAV1-mediated) VEGFA165 viral vector to pericyte-depleted or noise-exposed animals prevented and regenerated lost pericytes, improved blood supply, and attenuated hearing loss. These studies provide the first clear-cut evidence that pericytes are critical for vascular regeneration, vascular stability, and hearing in adults. The restoration of vascular function in the damaged cochlea, including in noise-exposed animals, suggests that VEGFA165 gene therapy could be a new strategy for ameliorating vascular associated hearing disorders.


Assuntos
Cóclea/irrigação sanguínea , Perda Auditiva Provocada por Ruído/fisiopatologia , Neovascularização Fisiológica/genética , Pericitos/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Orelha Interna/irrigação sanguínea , Terapia Genética , Perda Auditiva Provocada por Ruído/terapia , Técnicas In Vitro , Camundongos , Camundongos Transgênicos
4.
J Chem Inf Model ; 60(5): 2626-2633, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32045242

RESUMO

Cryo-electron tomography maps often exhibit considerable noise and anisotropic resolution, due to the low-dose requirements and the missing wedge in Fourier space. These spurious features are visually unappealing and, more importantly, prevent an automated segmentation of geometric shapes, requiring a subjective and labor-intensive manual tracing. We developed a novel computational strategy for objectively denoising and correcting missing-wedge artifacts in homogeneous specimen areas of tomograms, where it is assumed that a template repeats itself across the volume under consideration, as happens in the case of filaments. In our deconvolution approach, we use a template and a map of corresponding template locations, allowing us to compensate for the information lost in the missing wedge. We applied the method to tomograms of actin-filament bundles of inner-ear stereocilia, which are critical for the senses of hearing and balance. In addition, we demonstrate that our method can be used for cell membrane detection.


Assuntos
Algoritmos , Artefatos , Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador
5.
J Struct Biol ; 210(1): 107461, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31962158

RESUMO

Electron cryo-tomography allows for high-resolution imaging of stereocilia in their native state. Because their actin filaments have a higher degree of order, we imaged stereocilia from mice lacking the actin crosslinker plastin 1 (PLS1). We found that while stereocilia actin filaments run 13 nm apart in parallel for long distances, there were gaps of significant size that were stochastically distributed throughout the actin core. Actin crosslinkers were distributed through the stereocilium, but did not occupy all possible binding sites. At stereocilia tips, protein density extended beyond actin filaments, especially on the side of the tip where a tip link is expected to anchor. Along the shaft, repeating density was observed that corresponds to actin-to-membrane connectors. In the taper region, most actin filaments terminated near the plasma membrane. The remaining filaments twisted together to make a tighter bundle than was present in the shaft region; the spacing between them decreased from 13 nm to 9 nm, and the apparent filament diameter decreased from 6.4 to 4.8 nm. Our models illustrate detailed features of distinct structural domains that are present within the stereocilium.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Células Ciliadas Vestibulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/genética , Animais , Glicoproteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos/genética
6.
J Struct Biol ; 206(2): 149-155, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822456

RESUMO

High-resolution imaging of hair-cell stereocilia of the inner ear has contributed substantially to our understanding of auditory and vestibular function. To provide three-dimensional views of the structure of stereocilia cytoskeleton and membranes, we developed a method for rapidly freezing unfixed stereocilia on electron microscopy grids, which allowed subsequent 3D imaging by electron cryo-tomography. Structures of stereocilia tips, shafts, and tapers were revealed, demonstrating that the actin paracrystal was not perfectly ordered. This sample-preparation and imaging procedure will allow for examination of structural features of stereocilia in a near-native state.


Assuntos
Temperatura Baixa , Tomografia com Microscopia Eletrônica/métodos , Células Ciliadas Vestibulares/ultraestrutura , Estereocílios/ultraestrutura , Animais , Camundongos
7.
Plant Cell ; 31(3): 579-601, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787178

RESUMO

Light and nutrients are critical regulators of photosynthesis and metabolism in plants and algae. Many algae have the metabolic flexibility to grow photoautotrophically, heterotrophically, or mixotrophically. Here, we describe reversible Glc-dependent repression/activation of oxygenic photosynthesis in the unicellular green alga Chromochloris zofingiensis. We observed rapid and reversible changes in photosynthesis, in the photosynthetic apparatus, in thylakoid ultrastructure, and in energy stores including lipids and starch. Following Glc addition in the light, C. zofingiensis shuts off photosynthesis within days and accumulates large amounts of commercially relevant bioproducts, including triacylglycerols and the high-value nutraceutical ketocarotenoid astaxanthin, while increasing culture biomass. RNA sequencing reveals reversible changes in the transcriptome that form the basis of this metabolic regulation. Functional enrichment analyses show that Glc represses photosynthetic pathways while ketocarotenoid biosynthesis and heterotrophic carbon metabolism are upregulated. Because sugars play fundamental regulatory roles in gene expression, physiology, metabolism, and growth in both plants and animals, we have developed a simple algal model system to investigate conserved eukaryotic sugar responses as well as mechanisms of thylakoid breakdown and biogenesis in chloroplasts. Understanding regulation of photosynthesis and metabolism in algae could enable bioengineering to reroute metabolism toward beneficial bioproducts for energy, food, pharmaceuticals, and human health.


Assuntos
Clorofíceas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucose/farmacologia , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Antioxidantes/metabolismo , Bioengenharia , Carbono/metabolismo , Clorofíceas/genética , Clorofíceas/efeitos da radiação , Clorofíceas/ultraestrutura , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fotossíntese/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/ultraestrutura , Transcriptoma/efeitos da radiação , Xantofilas/metabolismo
8.
Front Cell Neurosci ; 13: 560, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920560

RESUMO

Outer Hair Cells (OHCs) in the mammalian cochlea display a unique type of voltage-induced mechanical movement termed electromotility, which amplifies auditory signals and contributes to the sensitivity and frequency selectivity of mammalian hearing. Electromotility occurs in the OHC lateral wall, but it is not fully understood how the supramolecular architecture of the lateral wall enables this unique form of cellular motility. Employing electron tomography of high-pressure frozen and freeze-substituted OHCs, we visualized the 3D structure and organization of the membrane and cytoskeletal components of the OHC lateral wall. The subsurface cisterna (SSC) is a highly prominent feature, and we report that the SSC membranes and lumen possess hexagonally ordered arrays of particles. We also find the SSC is tightly connected to adjacent actin filaments by short filamentous protein connections. Pillar proteins that join the plasma membrane to the cytoskeleton appear as variable structures considerably thinner than actin filaments and significantly more flexible than actin-SSC links. The structurally rich organization and rigidity of the SSC coupled with apparently weaker mechanical connections between the plasma membrane (PM) and cytoskeleton reveal that the membrane-cytoskeletal architecture of the OHC lateral wall is more complex than previously appreciated. These observations are important for our understanding of OHC mechanics and need to be considered in computational models of OHC electromotility that incorporate subcellular features.

9.
Molecules ; 23(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641472

RESUMO

Cryo-electron tomography (cryo-ET) is a powerful method of visualizing the three-dimensional organization of supramolecular complexes, such as the cytoskeleton, in their native cell and tissue contexts. Due to its minimal electron dose and reconstruction artifacts arising from the missing wedge during data collection, cryo-ET typically results in noisy density maps that display anisotropic XY versus Z resolution. Molecular crowding further exacerbates the challenge of automatically detecting supramolecular complexes, such as the actin bundle in hair cell stereocilia. Stereocilia are pivotal to the mechanoelectrical transduction process in inner ear sensory epithelial hair cells. Given the complexity and dense arrangement of actin bundles, traditional approaches to filament detection and tracing have failed in these cases. In this study, we introduce BundleTrac, an effective method to trace hundreds of filaments in a bundle. A comparison between BundleTrac and manually tracing the actin filaments in a stereocilium showed that BundleTrac accurately built 326 of 330 filaments (98.8%), with an overall cross-distance of 1.3 voxels for the 330 filaments. BundleTrac is an effective semi-automatic modeling approach in which a seed point is provided for each filament and the rest of the filament is computationally identified. We also demonstrate the potential of a denoising method that uses a polynomial regression to address the resolution and high-noise anisotropic environment of the density map.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Estereocílios/ultraestrutura , Algoritmos , Animais , Tomografia com Microscopia Eletrônica , Humanos , Análise de Regressão , Estereocílios/metabolismo
10.
Bioinform Res Appl (2018) ; 10847: 233-238, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36383494

RESUMO

Cryo-electron microscopy (Cryo-EM) and cryo-electron tomography (cryo-ET) produce 3-D density maps of biological molecules at a range of resolution levels. Pattern recognition tools are important in distinguishing biological components from volumetric maps with the available resolutions. One of the most distinct characters in density maps at medium (5-10 Å) resolution is the visibility of protein secondary structures. Although computational methods have been developed, the accurate detection of helices and ß-strands from cryo-EM density maps is still an active research area. We have developed a tool for protein secondary structure detection and evaluation of medium resolution 3-D cryo-EM density maps which combines three computational methods (SSETracer, StrandTwister, and AxisComparison). The program was integrated in UCSF Chimera, a popular visualization software in the cryo-EM community. In related work, we have developed BundleTrac, a computational method to trace filaments in a bundle from lower resolution cryo-ET density maps. It has been applied to actin filament tracing in stereocilia with good accuracy and can be potentially added as a tool in Chimera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...