Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(14): e202319153, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38356309

RESUMO

As a sustainable valorization route, electrochemical glycerol oxidation reaction (GOR) involves in formation of key OH* and selective adsorption/cleavage of C-C(O) intermediates with multi-step electron transfer, thus suffering from high potential and poor formate selectivity for most non-noble-metal-based electrocatalysts. So, it remains challenging to understand the structure-property relationship as well as construct synergistic sites to realize high-activity and high-selectivity GOR. Herein, we successfully achieve dual-high performance with low potentials and superior formate selectivity for GOR by forming synergistic Lewis and Brønsted acid sites in Ni-alloyed Co-based spinel. The optimized NiCo oxide solid-acid electrocatalyst exhibits low reaction potential (1.219 V@10 mA/cm2) and high formate selectivity (94.0 %) toward GOR. In situ electrochemical impedance spectroscopy and pH-dependence measurements show that the Lewis acid centers could accelerate OH* production, while the Brønsted acid centers are proved to facilitate high-selectivity formation of formate. Theoretical calculations reveal that NiCo alloyed oxide shows appropriate d-band center, thus balancing adsorption/desorption of C-O intermediates. This study provides new insights into rationally designing solid-acid electrocatalysts for biomass electro-upcycling.

2.
Small ; : e2400389, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287734

RESUMO

Rechargeable Mn-metal batteries (MMBs) can attract considerable attention because Mn has the intrinsic merits including high energy density (976 mAh g-1 ), high air stability, and low toxicity. However, the application of Mn in rechargeable batteries is limited by the lack of proper cathodes for reversible Mn2+ intercalation/de-intercalation, thus leading to low working voltage (<1.8 V) and poor cycling stability (≤200 cycles). Herein, a high-voltage and durable MMB with graphite as the cathode is successfully constructed using a LiPF6 -Mn(TFSI)2 hybrid electrolyte, which shows a high discharge voltage of 2.34 V and long-term stability of up to 1000 cycles. Mn(TFSI)2 can reduce the plating/stripping overpotential of Mn ions, while LiPF6 can efficiently improve the conductivity of the electrolyte. Electrochemical in-situ characterization implies the dual-anions intercalation/de-intercalation at the cathode and Mn2+ plating/stripping reaction at the anode. Theoretical calculations unveil the top site of graphite is the energetically favorable for anions intercalation and TFSI- shows the low migration barrier. This work paves an avenue for designing high-performance rechargeable MMBs towards electricity storage.

3.
Front Chem ; 11: 1078840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762189

RESUMO

Hybrid materials or hybrids incorporating organic and inorganic constituents are emerging as a very potent and promising class of materials due to the diverse but complementary nature of their properties. This complementarity leads to a perfect synergy of properties of the desired materials and products as well as to an extensive range of their application areas. Recently, we have overviewed and classified hybrid materials describing inorganics-in-organics in Part-I (Saveleva, et al., Front. Chem., 2019, 7, 179). Here, we extend that work in Part-II describing organics-on-inorganics, i.e., inorganic materials modified by organic moieties, their structure and functionalities. Inorganic constituents comprise of colloids/nanoparticles and flat surfaces/matrices comprise of metallic (noble metal, metal oxide, metal-organic framework, magnetic nanoparticles, alloy) and non-metallic (minerals, clays, carbons, and ceramics) materials; while organic additives can include molecules (polymers, fluorescence dyes, surfactants), biomolecules (proteins, carbohydtrates, antibodies and nucleic acids) and even higher-level organisms such as cells, bacteria, and microorganisms. Similarly to what was described in Part-I, we look at similar and dissimilar properties of organic-inorganic materials summarizing those bringing complementarity and composition. A broad range of applications of these hybrid materials is also presented whose development is spurred by engaging different scientific research communities.

4.
Chem Commun (Camb) ; 58(69): 9662-9665, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35946329

RESUMO

Herein, we present a facile plasma-induced strategy to introduce plentiful oxygen vacancies in porous metal-organic framework nanosheet arrays (Ov-Fe MOF/IF). The pore structure and coordinatively unsaturated metal sites endow the Ov-Fe MOF/IF with more active sites and accelerated reaction kinetics, thereby exhibiting a low potential of 1.51 V at 10 mA cm-2 for water splitting, which outperforms most MOF-based electrocatalysts.

5.
Adv Sci (Weinh) ; 9(6): e2104522, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35018738

RESUMO

Engineering of structure and composition is essential but still challenging for electrocatalytic activity modulation. Herein, hybrid nanostructured arrays (HNA) with branched and aligned structures constructed by cobalt selenide (CoSe2 ) nanotube arrays vertically oriented on carbon cloth with CoNi layered double hydroxide (CoSe2 @CoNi LDH HNA) are synthesized by a hydrothermal-selenization-hybridization strategy. The branched and hollow structure, as well as the heterointerface between CoSe2 and CoNi LDH guarantee structural stability and sufficient exposure of the surface active sites. More importantly, the strong interaction at the interface can effectively modulate the electronic structure of hybrids through the charge transfer and then improves the reaction kinetics. The resulting branched CoSe2 @CoNi LDH HNA as trifunctional catalyst exhibits enhanced electrocatalytic performance toward oxygen evolution/reduction and hydrogen evolution reaction. Consequently, the branched CoSe2 @CoNi LDH HNA exhibits low overpotential of 1.58 V at 10 mA cm-2 for water splitting and superior cycling stability (70 h) for rechargeable flexible Zn-air battery. Theoretical calculations reveal that the construction of heterostructure can effectively lower the reaction barrier as well as improve electrical conductivity, consequently favoring the enhanced electrochemical performance. This work concerning engineering heterostructure and topography-performance relationship can provide new guidance for the development of multifunctional electrocatalysts.

6.
Angew Chem Int Ed Engl ; 61(12): e202116068, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-34957659

RESUMO

Oxygen reduction reaction (ORR) activity can be effectively tuned by modulating the electron configuration and optimizing the chemical bonds. Herein, a general strategy to optimize the activity of metal single-atoms is achieved by the decoration of metal clusters via a coating-pyrolysis-etching route. In this unique structure, the metal clusters are able to induce electron redistribution and modulate M-N species bond lengths. As a result, M-ACSA@NC exhibits superior ORR activity compared with the nanoparticle-decorated counterparts. The performance enhancement is attributed to the optimized intermediates desorption benefiting from the unique electronic configuration. Theoretical analysis reinforces the significant roles of metal clusters by correlating the ORR activity with cluster-induced charge transfer. As a proof-of-concept, various metal-air batteries assembled with Fe-ACSA@NC deliver remarkable power densities and capacities. This strategy is an effective and universal technique for electron modulation of M-N-C, which shows great potential in application of energy storage devices.

7.
ACS Appl Mater Interfaces ; 12(26): 29393-29403, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490656

RESUMO

Developing novel bifunctional electrocatalysts with advanced oxygen electrocatalytic activity is pivotal for next-generation energy-storage devices. Herein, we present ultrathin oxygen-doped FePSe3 (FePSe3-O) nanosheets by Ar/O2 plasma treatment, with remarkable surface atom reorganization. Such surface atom reorganization generates multiple crystalline-amorphous interfaces that benefit the kinetics of oxygen evolution reaction, achieving a low overpotential of only 261 mV at 10 mA cm-2 with a small Tafel slope of 41.13 mV dec-1. Density functional theory calculation indicates that oxygen doping can also modulate the electrical states at the Fermi level with a decreased band gap responsible for the enhanced electrocatalytic performance. Such unique FePSe3-O nanosheets can be further fabricated as the air cathode in rechargeable liquid zinc-air batteries (ZABs), which deliver a high open circuit potential of 1.47 V, a small charge-discharge voltage gap of 0.80 V, and good cycling stability for more than 800 circles. As a proof of concept, the flexible solid-state ZABs assembled with FePSe3-O nanosheets as cathode also display a favorable charge-discharge performance, durable stability, and good bendability. This work sheds new insights into the rational design of defect-rich ternary thiophosphate nanosheets by plasma treatment toward enhanced oxygen electrocatalysts in metal-air batteries.

8.
Chem Commun (Camb) ; 56(50): 6842-6845, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32432255

RESUMO

Herein, novel and durable single-layer carbon-coated FeCo alloy nanoparticles embedded in single-walled carbon nanotubes (FeCo/SWCNTs) are rationally synthesized using a facile one-step route by aerosol-assisted floating catalyst chemical vapor deposition (CCVD). The as-synthesized unique FeCo/SWCNT catalyst exhibits remarkable oxygen electrocatalysis performance, especially oxygen evolution reaction activity and superior stability owing to the efficient synergistic effect between FeCo alloy and single-layer carbon regarding the electronic interaction and surface protection, achieving an overpotential (η) of 253 mV at 10 mA cm-2 and a Tafel slope of 44 mV dec-1 in 1.0 M KOH solution while presenting outstanding stability after being tested for 50 hours. Such high oxygen electrocatalysis performance advances realistic renewable zinc-air batteries with high efficiency as well.

9.
Chem Asian J ; 15(13): 1957-1962, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32367613

RESUMO

With the environmental pollution and non-renewable fossil fuels, it is imperative to develop eco-friendly, renewable, and highly efficient electrocatalysts for sustainable energy. Herein, a simple electrospinning process used to synthesis Mo2 C-embedded multichannel hollow carbon nanofibers (Mo2 C-MCNFs) and followed by the pyrolysis process. As prepared lotus root-like nanoarchitecture could offer rich porosity and facilitate the electrolyte infiltration, the Mo2 C-MCNFs delivered favourable catalytic activity for HER and OER. The resultant catalysts exhibit low overpotentials of 114 mV and 320 mV at a current density of 10 mA cm-2 for HER and OER, respectively. Furthermore, using the Mo2 C-MCNFs catalysts as a bifunctional electrode toward overall water splitting, which only needs a small cell voltage of 1.68 V to afford a current density of 10 mA cm-2 in the home-made alkaline electrolyzer. This interesting work presents a simple and effective strategy to further fabricating tunable nanostructures for energy-related applications.

10.
Adv Mater ; 31(16): e1808267, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30803063

RESUMO

Metal single-atom materials with their high atom utilization efficiency and unique electronic structures usually show remarkable catalytic performances in many crucial chemical reactions. Herein, a facile and easily scalable "impregnation-carbonization-acidification" strategy for fabricating a class of single-atom-anchored (including cobalt and nickel single atoms) monolith as superior binder-free electrocatalysts for developing high-performance wearable Zn-air batteries is reported. The as-prepared single atoms, supported by N-doped carbon flake arrays grown on carbon nanofibers assembly (M SA@NCF/CNF), demonstrate the dual characteristics of excellent catalytic activity (reversible oxygen overpotential of 0.75 V) and high stability, owing to the greatly improved active sites' accessibility and optimized single-sites/pore-structures correlations. Furthermore, wearable Zn-air battery based on Co SA@NCF/CNF air electrode displays superior stability under deformation, satisfactory energy storage capacity, and good practicality to be utilized as an integrated battery system. Theoretical calculations reveal a mechanism for the promotion of the catalytic performances on single atomic sites by lowering the overall oxygen reduction/evolution reaction barriers comparing to metal cluster co-existing configuration. These findings provide a facile strategy for constructing free-standing single-atom materials as well as the engineering of high-performance binder-free catalytic electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...