Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 36(1): 176-192.e10, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171332

RESUMO

The efficacy of chimeric antigen receptor (CAR) T cell therapy is hampered by relapse in hematologic malignancies and by hyporesponsiveness in solid tumors. Long-lived memory CAR T cells are critical for improving tumor clearance and long-term protection. However, during rapid ex vivo expansion or in vivo tumor eradication, metabolic shifts and inhibitory signals lead to terminal differentiation and exhaustion of CAR T cells. Through a mitochondria-related compound screening, we find that the FDA-approved isocitrate dehydrogenase 2 (IDH2) inhibitor enasidenib enhances memory CAR T cell formation and sustains anti-leukemic cytotoxicity in vivo. Mechanistically, IDH2 impedes metabolic fitness of CAR T cells by restraining glucose utilization via the pentose phosphate pathway, which alleviates oxidative stress, particularly in nutrient-restricted conditions. In addition, IDH2 limits cytosolic acetyl-CoA levels to prevent histone acetylation that promotes memory cell formation. In combination with pharmacological IDH2 inhibition, CAR T cell therapy is demonstrated to have superior efficacy in a pre-clinical model.


Assuntos
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Isocitrato Desidrogenase , Histonas/metabolismo , Acetilação , Linfócitos T , Neoplasias/metabolismo , Mitocôndrias/metabolismo
2.
Int J Hematol ; 117(2): 236-250, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399285

RESUMO

Drug resistance is a major obstacle to the successful treatment of cancer. The role of the miR-106b-25 cluster in drug resistance of haematologic malignancies has not yet been elucidated. Here, we show that the miR-106b-25 cluster mediates resistance to therapeutic agents with structural and mechanistic dissimilarity in vitro and in vivo. RNA sequencing data revealed that overexpression of the miR-106b-25 cluster or its individual miRNAs resulted in downregulation of multiple key regulators of apoptotic pathways. Luciferase reporter assay identified TP73 as a direct target of miR-93 and miR-106b, BAK1 as a direct target of miR-25 and CASP7 as a direct target of all three miRNAs. We also showed that inhibitors of the miR-106b-25 cluster and BCL-2 exert synergistic effects on apoptosis induction in primary myeloid leukaemic cells. Thus, the members of the miR-106b-25 cluster may jointly contribute to myeloid leukaemia drug resistance by inactivating multiple apoptotic genes. Targeting this cluster could be a promising combination strategy in patients resistant to therapeutic agents that induce apoptosis.


Assuntos
Leucemia Mieloide , MicroRNAs , Neoplasias , Humanos , MicroRNAs/metabolismo , Apoptose/genética , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/genética , Resistência a Medicamentos , Linhagem Celular Tumoral , Proliferação de Células
3.
Invest New Drugs ; 40(6): 1194-1205, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36044173

RESUMO

The V617F mutation in Janus kinase 2 is considered one of the driver mutations leading to Philadelphia-negative myeloproliferative neoplasms (MPNs). Concurrent JAK2V617F and ASXL1 mutations accelerate the progression of myelofibrosis in patients with MPNs. Few therapies are currently available for patients with these two mutations. In our study, the combination of ruxolitinib with ABT-737 was evaluated in cells carrying JAK2V617F and ASXL1 double mutations. RNA sequencing indicated overactivated oxidative phosphorylation in JAK2V617F;Asxl1+/- cKit+ cells. The cell line model with JAK2V617F and ASXL1 double mutations (HEL-AKO cells) also exhibited dysregulated mitochondrial function with an increase in the reactive oxygen species levels and a decrease in the ATP levels. The colony growth inhibition rates of cells with JAK2V617F and ASXL1 double mutations were significantly lower than those of cells with only the JAK2V617F mutation. Combined treatment with ruxolitinib and ABT-737 promoted apoptosis and inhibited the proliferation of HEL-AKO cells. Cotreatment with the two drugs also inhibited the growth of bone marrow mononuclear cells isolated from patients with concurrent JAK2V617F and ASXL1 mutations. In conclusion, we provide preclinical evidence showing that the combination of ruxolitinib and ABT-737 is a promising therapeutic strategy for MPN patients with concurrent JAK2V617F and ASXL1 mutations.


Assuntos
Janus Quinase 2 , Transtornos Mieloproliferativos , Humanos , Pirimidinas/uso terapêutico , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Mutação , Proteínas Repressoras
4.
Am J Hematol ; 96(11): 1385-1395, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339537

RESUMO

Acute myeloid leukemia (AML) is an aggressive cancer of myeloid cells with high levels of heterogeneity and great variability in prognostic behaviors. Cytogenetic abnormalities and genetic mutations have been widely used in the prognostic stratification of AML to assign patients into different risk categories. Nevertheless, nearly half of AML patients assigned to intermediate risk need more precise prognostic schemes. Here, 336 differentially expressed genes (DEGs) between AML and control samples and 206 genes representing the intratumor heterogeneity of AML were identified. By applying a LASSO Cox regression model, we generated a 4-mRNA prognostic signature comprising KLF9, ENPP4, TUBA4A and CD247. Higher risk scores were significantly associated with shorter overall survival, complex karyotype, and adverse mutations. We then validated the prognostic value of this 4-mRNA signature in two independent cohorts. We also proved that incorporation of the 4-mRNA-based signature in the 2017 European LeukemiaNet (ELN) risk classification could enhance the predictive accuracy of survival in patients with AML. Univariate and multivariate analyses showed that this signature was independent of traditional prognostic factors such as age, WBC count, and unfavorable cytogenetics. Finally, the molecular mechanisms underlying disparate outcomes in high-risk and low-risk AML patients were explored. Therefore, our findings suggest that the 4-mRNA signature refines the risk stratification and prognostic prediction of AML patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/genética , RNA Mensageiro/genética , Transcriptoma , Complexo CD3/genética , Humanos , Estimativa de Kaplan-Meier , Fatores de Transcrição Kruppel-Like/genética , Leucemia Mieloide Aguda/diagnóstico , Diester Fosfórico Hidrolases/genética , Prognóstico
5.
Cancer Lett ; 519: 78-90, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34186160

RESUMO

Additional sex combs-like 1 (ASXL1) is frequently mutated in a variety of myeloid malignancies, resulting in expression of a C-terminal-truncated ASXL1 protein that confers gain of function on the ASXL1-BAP1 deubiquitinase (DUB) complex. Several studies have reported that hyperactivity of BRCA-1-associated protein 1 (BAP1) in deubiquitinating mono-ubiquitinated histone H2AK119 is one of the critical molecular mechanisms in ASXL1 mutation-driven myeloid malignancies in mice. In this study, we found that human haematopoietic stem and progenitor cells (HSPCs) overexpressing truncated ASXL1 (ASXL1Y591X) developed an MDS-like phenotype similar to that induced by overexpression of BAP1. We then used shRNAs targeting BAP1 in ASXL1Y591X-overexpressing HSPCs and primary leukaemia cells with ASXL1 mutation, demonstrating that reduced BAP1 expression can partially rescue the pathological consequences. RNA sequencing and chromatin immunoprecipitation coupled with quantitative PCR analyses revealed that reduced BAP1 expression suppressed upregulation of the transcription factors AP-1 and EGR1/2, as well as myeloid dysplasia-associated genes, by retarding H2AK119Ub removal caused by ASXL1 mutation. This study indicates that targeting the hyperactive ASXL1-BAP1 DUB complex can attenuate mutant ASXL1-driven myeloid malignancies in human.


Assuntos
Células-Tronco Hematopoéticas/patologia , Mutação/genética , Células Mieloides/patologia , Neoplasias/genética , Neoplasias/patologia , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Células HEK293 , Humanos , Células K562 , Ativação Transcricional/genética , Ubiquitina/genética , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...