Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Sci Rep ; 14(1): 10248, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702372

RESUMO

Ambient air temperature is a key factor affecting human health. Female reproductive disorders are representative health risk events under low temperature. However, the mechanism involving in cold-induced female reproductive disorders remains largely unknown. Female mice were intermittently exposed to cold conditions (4 °C) to address the health risk of low temperature on female reproductive system. Primary granulosa cells (GCs) were prepared and cultured under low temperature (35 °C) or exposed to ß3-adrenoreceptor agonist, isoproterenol, to mimic the condition of cold exposure. Western-blot, RT-PCR, co-IP, ELISA, pharmacological inhibition or siRNA-mediated knockdown of target gene were performed to investigate the possible role of hormones, gap conjunction proteins, and ER stress sensor protein in regulating female reproductive disorders under cold exposure. Cold exposure induced estrous cycle disorder and follicular dysplasia in female mice, accompanying with abnormal upregulation of progesterone and its synthetic rate-limiting enzyme, StAR, in the ovarian granulosa cells. Under the same conditions, an increase in connexin 43 (CX43) expressions in the GCs was also observed, which contributed to elevated progesterone levels in the ovary. Moreover, ER stress sensor protein, PERK, was activated in the ovarian GCs after cold exposure, leading to the upregulation of downstream NRF2-dependent CX43 transcription and aberrant increase in progesterone synthesis. Most importantly, blocking PERK expression in vivo significantly inhibited NRF2/CX43/StAR/progesterone pathway activation in the ovary and efficiently rescued the prolongation of estrous cycle and the increase in follicular atresia of the female mice induced by cold stress. We have elucidated the mechanism of ovarian PERK/NRF2/CX43/StAR/progesterone pathway activation in mediating female reproductive disorder under cold exposure. Targeting PERK might be helpful for maintaining female reproductive health under cold conditions.


Assuntos
Temperatura Baixa , Conexina 43 , Células da Granulosa , Fator 2 Relacionado a NF-E2 , Progesterona , Transdução de Sinais , eIF-2 Quinase , Animais , Feminino , eIF-2 Quinase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Progesterona/metabolismo , Células da Granulosa/metabolismo , Conexina 43/metabolismo , Conexina 43/genética , Temperatura Baixa/efeitos adversos , Ovário/metabolismo , Ciclo Estral
2.
Mar Environ Res ; 194: 106338, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198899

RESUMO

Under the dual stress of global warming and human interaction, Liaodong Bay (LDB) and northern Yellow Sea (NYS) are undergoing significant ecological changes. Little is known about the driving nutrients characteristics supporting fishery resource output in these areas. We carried out three field observations in 2019 to investigate nutrient status. Results showed that dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved silica (DSi) concentrations changed seasonally, with lowest values in spring, and highest values in autumn. High DIN, DIP, and DSi concentrations were detected in LDB and NYS's estuary areas. The Yellow Sea Cold Water Mass plays a role in the distribution and seasonal variation of nutrients. Exchanges across the sediment-water interface, SFGD, atmospheric deposition, and the adjacent sea input dominated DIN dynamics of these areas. DIP primarily came from the adjacent sea input and DSi mainly originated from sediment release and the adjacent sea input. NYS seawater invasion accounted for 13.8% of DIN, 63.4% of DIP, and 35.1% of DSi in LDB. These results provide new insights to better facilitate the formulation of nitrogen and phosphorus reduction and control policies in these marginal seas.


Assuntos
Baías , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , China , Nutrientes , Água , Nitrogênio/análise , Fósforo/análise
3.
Biochem Biophys Res Commun ; 691: 149326, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38035406

RESUMO

Sleep deprivation (SD) weakens the immune system and leads to increased susceptibility to infectious or inflammatory diseases. However, it is still unclear how SD affects humoral immunity. In the present study, sleep disturbance was conducted using an sleep deprivation instrument, and the bacterial endotoxin lipopolysaccharide (LPS) was used to activate the immune response. It was found that SD-pretreatment reduced LPS-induced IgG2b+ B cells and IgG2b isotype antibody production in lymphocytes of spleen. And, SD-pretreatment decreased the proportion of CD4+T cells, production of CD4+T cells derived TGF-ß1 and its contribution in helping IgG2b production. Additionally, BMAL1 and CLOCK were selectively up-regulated in lymphocytes after SD. Importantly, BMAL1 and CLOCK deficiency contributed to TGF-ß1 expression and production of IgG2b+ B cells. Thus, our results provide a novel insight to explain the involvement of BMAL1 and CLOCK under SD stress condition, and their roles in inhibiting TGF-ß1 expression and contributing to reduction of LPS induced IgG2b production.


Assuntos
Fatores de Transcrição ARNTL , Formação de Anticorpos , Proteínas CLOCK , Imunoglobulina G , Privação do Sono , Privação do Sono/genética , Privação do Sono/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/imunologia , Proteínas CLOCK/genética , Proteínas CLOCK/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/genética , Estresse Fisiológico/imunologia , Animais , Camundongos , Ratos , Células Cultivadas
4.
J Biochem Mol Toxicol ; 37(12): e23494, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37563788

RESUMO

Particulate matter (PM) 2.5 has long been regarded as a major risk factor of the respiratory system, which constitutes a threat to human health. Although the positive relationship between PM2.5 exposure and the development of respiratory diseases has been well established, limited studies investigate the intrinsic self-protection mechanisms against PM2.5-induced respiratory injuries. Excessive pulmonary inflammation served as a key pathogenic mechanism in PM2.5-induced airway dysfunction, and we have previously shown that PM2.5 induced the production of vascular endothelial growth factor A (VEGFA) in the bronchial epithelial cells, which subsequently led to pulmonary inflammatory responses. In the current study, we found that PM2.5 also concurrently induced the expression of the stress-responsive protein heme oxygenase-1 (HO-1) along with VEGFA in the bronchial epithelial cells both in vivo and in vitro. Importantly, knocking down of HO-1 expression significantly increased the synthesis and secretion of VEGFA; while overexpression of HO-1 showed the opposite effects, indicating that HO-1 induction can antagonize VEGFA production in the bronchial epithelial cells upon PM2.5 exposure. Mechanistically, HO-1 inhibited PM2.5-evoked VEGFA induction through modulating hypoxia-inducible factor 1 alpha (HIF-1α), which was the upstream transcriptional factor of VEGFA. More specifically, HO-1 could not only inhibit HIF-1α expression, but also suppress its transactivity. Taken together, our results suggested that HO-1 was an intrinsic protective factor against PM2.5-induced pulmonary VEGFA production with a mechanism relating to HIF-1α, thus providing a potential treatment strategy against PM2.5 triggered airway injuries.


Assuntos
Heme Oxigenase-1 , Fator A de Crescimento do Endotélio Vascular , Humanos , Heme Oxigenase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pulmão/metabolismo , Células Epiteliais/metabolismo , Material Particulado/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia
6.
Environ Sci Pollut Res Int ; 30(36): 85330-85343, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37386216

RESUMO

Marine phytoplankton size-class structure affects ecological functions and shellfish culture. We use high-throughput sequencing and size-fractioned grading techniques to identify and analyze responses of phytoplankton differences in environmental variables at Donggang, northern Yellow Sea (high inorganic nitrogen (DIN)) and Changhai (low DIN) for 2021. The main environmental variables that correlate with differences in the proportional contributions of pico-, nano-, and microphytoplankton to the total phytoplankton community are inorganic phosphorus (DIP), nitrite to inorganic nitrogen ratio (NO2/dissolved inorganic nitrogen (DIN)), and ammonia nitrogen to inorganic nitrogen ratio (NH4/DIN), respectively. DIN, which contributes most to environmental differences, mainly positively correlates with changes in picophytoplankton biomass in high DIN waters. Nitrite (NO2) correlates mostly with changes in the proportional contribution of microphytoplankton in high DIN waters and nanophytoplankton in low DIN waters, and negatively correlates with changes in the biomass and proportional representation of microphytoplankton in low DIN waters. For near-shore phosphorus-limited waters, an increase in DIN may increase total microalgal biomass, but proportions of microphytoplankton may not increase; for high DIN waters, an increase in DIP may increase proportions of microphytoplankton, while for low DIN waters, an increase in DIP may preferentially increase proportions of picophytoplankton and nanophytoplankton. Picophytoplankton contributed little to the growth of two commercially cultured filter-feeding shellfish, Ruditapes philippinarum and Mizuhopecten yessoensis.


Assuntos
Microalgas , Nitritos , Dióxido de Nitrogênio , China , Nutrientes , Fitoplâncton , Nitrogênio/análise , Fósforo/análise
7.
J Cell Sci ; 136(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36855954

RESUMO

Our previous studies have revealed that GADD45α is a liable proapoptotic protein, which undergoes MDM2-dependent constitutive ubiquitylation and degradation in resting cancer cells. Under chemotherapeutic agent (such as arsenite, 5-Fu and VP-16) exposure, DAPK1 functions as a novel p53 (also known as TP53) kinase, which induces phosphorylation of p53 at Ser15 and transactivates the p53 target Ets-1, to synergistically repress IKKß-dependent MDM2 stability, and ultimately removes the inhibitory effect of MDM2 on GADD45α, resulting in GADD45α accumulation and cell apoptosis. In the current study, we show that there is a strong induction of ISG20L1 (also known as AEN) expression in several cancer cell lines under exposure of arsenite and other chemotherapeutic agents. Surprisingly, although originally identified as a transcriptional target of p53, ISG20L1 induction was not controlled by p53. Instead, ISG20L1 functioned as upstream activator of p53 by interacting with DAPK1, and plays an essential role in promoting DAPK1-p53 complex formation and the subsequent activation of Ets-1/IKKß/MDM2/GADD45α cascade. Therefore, our findings have revealed novel function of ISG20L1 in mediating cancer cell apoptosis induced by chemotherapeutic agents via modulating activation of the DAPK1- and p53-dependent cell death pathway.


Assuntos
Arsenitos , Proteína Supressora de Tumor p53 , Apoptose , Arsenitos/metabolismo , Arsenitos/farmacologia , Quinase I-kappa B/metabolismo , Quinase I-kappa B/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Exorribonucleases/metabolismo
8.
Environ Toxicol Pharmacol ; 97: 104024, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427673

RESUMO

PM2.5 has been accepted as a strong risk factor for cardiovascular diseases. Activation of the renin-angiotensin system (RAS) has been proved to be a key factor in triggering vascular endothelial dysfunction upon PM2.5 exposure in our previous reports. In the current study, we observed the concurrent induction of hemoxygenase (HO)- 1 and RAS components (ANGII and AT1R) expression both in the vascular endothelial cell lines and in rat lung tissue after PM2.5 exposure. Furthermore, HO-1 inhibited RAS activation by suppressing the expression and activity of HIF1α, the upstream transcriptional activator of ANGII and AT1R. In addition, HO-1 blocked significantly increased the release of cell adhesion molecules and chemokines (VCAM-1, E-Selectin, P-Selectin, IL-8, MCP-1) that drive monocyte-endothelium adhesion, along with the enhanced the generation of oxidative stress response mediators in the vascular endothelium. These data together indicate that PM2.5 induced HO-1 upregulation functions as a self-defense response to antagonize endothelial dysfunction by inhibiting HIF1α-mediated RAS activation. Targeting endogenous protective pathway might be helpful to protect from PM2.5-induced cardiovascular injury.


Assuntos
Heme Oxigenase-1 , Estresse Oxidativo , Animais , Ratos , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Material Particulado/toxicidade
9.
Int. microbiol ; 25(4): 701-708, Nov. 2022. ilus
Artigo em Inglês | IBECS | ID: ibc-216238

RESUMO

Biogenic manganese oxides (BioMnOx) have been found all over the world, and most of them were formed by Mn(II)-oxidizing bacteria (MnOB). In this study, a MnOB designated as FF-1 was isolated from marine surface sediments in the Bohai Sea, China. This strain was identified as Bacillus sp. and can tolerate more than 5% salinity. It can grow in the presence of 0–7 mM Mn(II) and pH range from 5.0 to 7.0. When the initial Mn(II) was 5 mM, the percentage of Mn(II) oxidation reached the highest value of 16% after 10 days of incubation. The initial pH (5.0 to 7.0) affected the percentage of Mn(II) oxidation, but the ability of the strain FF-1 to self-regulate pH resulted in the final pH being almost 7.6. The removal of Mn(II) by the strain FF-1 involves extracellular and intracellular adsorption as well as Mn(II) oxidation. Intracellular Mn adsorption contributed a small part to the total Mn removal, and extracellular adsorption was dominant in the initial stage of Mn removal. The solid products after Mn removal were a mixture of MnOx and MnCO3. The layered MnOx formed in the extracellular space could be easily collected and used for adsorption and oxidation of pollutants.(AU)


Assuntos
Humanos , Biodegradação Ambiental , Oxidação , Manganês , Bacillus subtilis , Microbiologia , China
10.
Int Microbiol ; 25(4): 701-708, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35687202

RESUMO

Biogenic manganese oxides (BioMnOx) have been found all over the world, and most of them were formed by Mn(II)-oxidizing bacteria (MnOB). In this study, a MnOB designated as FF-1 was isolated from marine surface sediments in the Bohai Sea, China. This strain was identified as Bacillus sp. and can tolerate more than 5% salinity. It can grow in the presence of 0-7 mM Mn(II) and pH range from 5.0 to 7.0. When the initial Mn(II) was 5 mM, the percentage of Mn(II) oxidation reached the highest value of 16% after 10 days of incubation. The initial pH (5.0 to 7.0) affected the percentage of Mn(II) oxidation, but the ability of the strain FF-1 to self-regulate pH resulted in the final pH being almost 7.6. The removal of Mn(II) by the strain FF-1 involves extracellular and intracellular adsorption as well as Mn(II) oxidation. Intracellular Mn adsorption contributed a small part to the total Mn removal, and extracellular adsorption was dominant in the initial stage of Mn removal. The solid products after Mn removal were a mixture of MnOx and MnCO3. The layered MnOx formed in the extracellular space could be easily collected and used for adsorption and oxidation of pollutants.


Assuntos
Bacillus , Poluentes Ambientais , Bacillus/genética , Bactérias , Manganês , Naftalenos , Oxirredução , Óxidos
11.
Mitochondrial DNA B Resour ; 7(3): 521-522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342794

RESUMO

In this study, we determined the complete mitochondrial genome (mitogenome) of Laomedia astacina De Haan, 1841 using next-generation sequencing technology. The total length of the mitogenome sequence of L. astacina is 14,795 base pairs, including 13 protein-coding genes (PCGs), 22 transfer RNA genes, and two ribosomal RNA genes. The overall composition of the mitogenome is estimated to be 35.3% A, 38.0% T, 13.8% C, and 12.9% G, indicating that the L. astacina mitogenome is rich in A + T (73.3%). The phylogenetic relationships of 13 decapod species were constructed based on the 13 PCGs by the maximum-likelihood approach using IQtree software.

12.
Mar Pollut Bull ; 174: 113319, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35090300

RESUMO

To better understand the spatial distribution and ecological risks of polycyclic aromatic hydrocarbons especially in low latitude coastal productive areas, PAHs in sea ice were examined for the first time in northern Liaodong bay of China in December 2020. Results showed ΣPAHs were dominated by 2- and 3-ring, with the mean concentration of 241.9 ng L-1 and 202.8 ng L-1 in sea ice and seawater, respectively, suggesting a moderate ecological risk based on Risk Quotients assessment. Ice enrichment factors were greater than 1 at 82% of the sampling sites, reflecting enrichment of PAHs in sea ice. The characteristic compounds ratios demonstrated PAHs mainly derived from petrogenic sources, while combustion was another crucial source for PAHs in sea ice via atmospheric deposition. This helps to better elucidate pollution status, potential sources and risk assessment of PAHs in productive coastal oceans especially during ice-covered period for contamination control and environmental management.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Baías , Monitoramento Ambiental , Camada de Gelo , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar , Poluentes Químicos da Água/análise
13.
Front Physiol ; 13: 1024038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620217

RESUMO

High altitudes or exposure to hypoxia leads to female reproductive disorders. Circadian clocks are intrinsic time-tracking systems that enable organisms to adapt to the Earth's 24-h light/dark cycle, which can be entrained by other environmental stimuli to regulate physiological and pathological responses. In this study, we focused on whether ovarian circadian clock proteins were involved in regulating female reproductive dysfunction under hypoxic conditions. Hypobaric hypoxia was found to induce a significantly prolonged estrous cycle in female mice, accompanied by follicular atresia, pituitary/ovarian hormone synthesis disorder, and decreased LHCGR expression in the ovaries. Under the same conditions, the levels of the ovarian circadian clock proteins, CLOCK and BMAL1, were suppressed, whereas E4BP4 levels were upregulated. Results from granulosa cells (GCs) further demonstrated that CLOCK: BMAL1 and E4BP4 function as transcriptional activators and repressors of LHCGR in ovarian GCs, respectively, whose responses were mediated by HIF1ɑ-dependent (E4BP4 upregulation) and ɑ-independent (CLOCK and BMAL1 downregulation) manners. The LHCGR agonist was shown to efficiently recover the impairment of ovulation-related gene (EREG and PGR) expression in GCs induced by hypoxia. We conclude that hypoxia exposure causes dysregulation of ovarian circadian clock protein (CLOCK, BMAL1, and E4BP4) expression, which mediates female reproductive dysfunction by impairing LHCGR-dependent signaling events. Adjusting the timing system or recovering the LHCGR level in the ovaries may be helpful in overcoming female reproductive disorders occurring in the highlands.

14.
Ecotoxicol Environ Saf ; 227: 112892, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34649141

RESUMO

Exposure to ultraviolet B (UVB) has been demonstrated to induce DNA damage as well as angiogenesis-related photo-damages, which are implicated in a variety of medical problems, including sunburn, photo-aging and skin cancers. However, the molecular mechanism related to UVB-induced photo-injuries remained fully elucidated. Here we revealed that one of the catalytic subunits of the IKK complex, IKKα, played a critical role in mediating UVB-induced apoptotic responses in two kinds of UVB sensitive cells, human keratinocyte (HaCat) and mouse embryonic fibroblasts (MEFs). This function of IKKα was unrelated to NF-κB activity, but was delivered by inducing phosphorylation and acetylation of p53 and upregulating the expression of the pro-apoptotic p53 target gene, PERP. Although IKKα kinase activity was required for mediating post-translational modifications and transactivation of 53 and PERP induction, IKKα did not show direct binding ability toward p53. Instead, IKKα could interact with CHK1, the protein kinase leading to p53 phosphorylation, and trigger CHK1 activation and CHK1/p53 complex formation. At the same time, IKKα could also interact with p300 and CBP, the acetyltransferases responsible for p53 acetylation, and trigger p300/CBP activation and p300/p53 or CBP/p53 complex formation under UVB exposure. Taken together, we have identified a novel NF-κB-independent role of IKKα in mediating UVB-induced apoptosis by regulating p53 pathway activation. Targeting IKKα/p53/PERP pathway might be helpful to prevent skin photo-damages induced by sunlight.


Assuntos
Proteína Supressora de Tumor p53 , Raios Ultravioleta , Animais , Apoptose , Fibroblastos/metabolismo , Genes Supressores de Tumor , Humanos , Quinase I-kappa B , Queratinócitos , Proteínas de Membrana , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta/efeitos adversos
15.
Anal Sci ; 37(12): 1821-1824, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34148924

RESUMO

A simultaneously HPLC detection method for cannabidiolic acid (CBDA), cannabidiol (CBD), cannabinol (CBN), Δ9-tetrahydrocannabinol (THC), tetrahydro-cannabinolic acid (THCA) in 3 kinds of cosmetics matrix containing hemp leaf extract was developed. The extraction and HPLC conditions were optimized, and a methodological verification was also carried out. The results showed that this method had a good linear relationship in the range of 0.25 - 50 µg/mL with LOD values for 5 cannabinoids all between 0.10 - 0.25 µg/g. The recovery rates of 5 cannabinoids in 3 different cosmetics matrixes were between 90.1 - 108.5%, and the RSD values were all below 4.4%. These results indicated that this method had the advantages of simple operation, high sensitivity, and good accuracy. Through the testing of 6 kinds of hemp cosmetics, it was found that such cosmetics had uneven quality. The establishment of this method can lay a methodological foundation for establishing relevant testing method standards.


Assuntos
Canabinoides , Cannabis , Cosméticos , Canabinoides/análise , Cromatografia Líquida de Alta Pressão
16.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34140406

RESUMO

Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or break-induced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a RNA/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/metabolismo , Conversão Gênica , Deleção de Genes , Duplicação Gênica , Humanos , Modelos Biológicos , Ligação Proteica , Rad51 Recombinase/metabolismo
17.
Biochem Biophys Res Commun ; 559: 217-221, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33957483

RESUMO

Ornithine transcarbamylases (OTC), a key enzyme in urea cycle, is an important marker for some liver injury or diseases. However, whether OTC could be a sensitive indicator for liver dysfunction under sleep disturbance condition remains unknown. The present study aimed to explore the circadian oscillation expression of OTC and its significance in disturbed sleep condition. Sleep disturbance was conducted by a sleep deprivation (SD) instrument. Our results found that SD for 72h induced abnormal increasing of OTC levels in serum and liver of rats. And, serum OTC concentration and liver OTC expression could return to normal levels after recovery sleep following SD. Moreover, hepatic OTC expression showed circadian oscillation in day and night, characterized with occurrence of a peak between ZT 22 and ZT 2, and a nadir between ZT 14 and ZT 18. Further analysis suggested the existence of ROR response element (RORE) for potential RORɑ binding sites in OTC promoter region, and elevated RORɑ expression in rat livers under sleep disturbance condition. Additionally, oscillation expression of OTC induced by serum shock in HepG2 cells was characterized with a peak occurred between ZT 12 and ZT 16, and RORɑ knockdown at ZT 16 significantly lowered OTC expression. The results together indicate that OTC is closely correlated with circadian clock, and could be a sensitive indicator for sleep disturbance stress.


Assuntos
Ritmo Circadiano , Ornitina Carbamoiltransferase/metabolismo , Transtornos do Sono-Vigília/enzimologia , Transtornos do Sono-Vigília/fisiopatologia , Animais , Sequência de Bases , Regulação Enzimológica da Expressão Gênica , Células Hep G2 , Homeostase , Humanos , Fígado/enzimologia , Masculino , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ornitina Carbamoiltransferase/genética , Ratos Sprague-Dawley , Sono/genética , Transtornos do Sono-Vigília/genética
19.
Huan Jing Ke Xue ; 42(4): 1772-1780, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742812

RESUMO

Fourteen current-use pesticides (CUPs) in the surface seawaters of the typical Liaoning sea areas were analyzed using HPLC-MS/MS. The concentrations, distribution, and ecological risks were studied, as well as their source appointments using principal component analysis (PCA). The results revealed that seven types of CUPs were detected in the surface seawaters of the typical Liaoning sea areas. The total concentrations of these CUPs ranged from 16.7 ng·L-1 to 176.1 ng·L-1. The samples with high concentrations were collected mostly from the estuary, and the concentrations of CUPs in the western Liaodong Bay were generally higher than those in the northeastern Yellow Sea. Atrazine and triadimenol were the predominant CUPs, and their contribution rates accounted for 56.0% and 34.5%, respectively. The PCA results indicated that six types of CUPs might be caused by the runoff from farmlands and the wastewater discharge from the chemical pesticide factory, and fruit planting could be a substantial contributor to the single component acetochlor. Atrazine and acetochlor posed medium-high ecological risks to the microalgae, while all the seven types of CUPs showed relatively lower risks to invertebrates and fish.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , China , Monitoramento Ambiental , Praguicidas/análise , Água do Mar , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
20.
Neurosci Res ; 171: 124-132, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33785408

RESUMO

Sleep loss leads to a spectrum of mood disorders such as anxiety disorders, bipolar disorder and depression in many individuals. However, the underlying mechanisms are largely unknown. In this study, sleep-disturbed animals were tested for anxiety and depressive behaviors. We then studied the effects of SD on hypothalamic-pituitary-adrenal (HPA) axis function by measuring serum and CSF levels of corticosterone (CORT), and at the end of the experiment, brains were collected to measure the circadian oscillations of clock genes expression in the hypothalamus, glial cell activation and inflammatory cytokine alterations. Our results indicated that SD for 3 days resulted in anxiety- and depressive-like behaviors. SD exaggerated cortisol response to HPA axis, significantly altered the circadian oscillations of clock genes, decreased the expression of tight junction protein ZO-1 and Claudin 5 and increased the number of GFAP-positive cells and Iba-1-positive cells and caused subsequent elevation of pro-inflammatory cytokines IL-6, IL-1ß and TNFα. These findings demonstrated that SD for 3 days induced anxiety- and depression-like behaviors in rats in company with altering the circadian oscillations of clock genes and inducing neuroinflammation, indicating the underlying mechanism of sleep loss induced neuronal dysfunction.


Assuntos
Sistema Hipotálamo-Hipofisário , Transtornos do Sono-Vigília , Animais , Corticosterona , Depressão , Sistema Hipófise-Suprarrenal , Ratos , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...