Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(29): e2400248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38742698

RESUMO

Single-crystal metal foils with high-index facets are currently being investigated owing to their potential application in the epitaxial growth of high-quality van der Waals film materials, electrochemical catalysis, gas sensing, and other fields. However, the controllable synthesis of large single-crystal metal foils with high-index facets remains a great challenge because high-index facets with high surface energy are not preferentially formed thermodynamically and kinetically. Herein, single-crystal nickel foils with a series of high-index facets are efficiently prepared by applying prestrain energy engineering technique, with the largest single-crystal foil exceeding 5×8 cm2 in size. In terms of thermodynamics, the internal mechanism of prestrain regulation on the formation of high-index facets is proposed. Molecular dynamics simulation is utilized to replicate and explain the phenomenon of multiple crystallographic orientations resulting from prestrain regulation. Additionally, large-sized and high-quality graphite films are successfully fabricated on single-crystal Ni(012) foils. Compared to the polycrystalline nickel, the graphite/single-crystal Ni(012) foil composites show more than five-fold increase in thermal conductivity, thereby showing great potential applications in thermal management. This study hence presents a novel approach for the preparation of single-crystal nickel foils with high-index facets, which is beneficial for the epitaxial growth of certain two-dimensional materials.

2.
Adv Mater ; 34(50): e2206812, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269022

RESUMO

Organic molecules have been considered promising energy-storage materials in aqueous zinc-ion batteries (ZIBs), but are plagued by poor conductivity and structural instability because of the short-range conjugated structure and low molecular weight. Herein, an imine-based tris(aza)pentacene (TAP) with extended conjugated effects along the CN backbones is proposed, which is in situ injected into layered MXene to form a TAP/Ti3 C2 Tx cathode. Theoretical and electrochemical analyses reveal a selective H+ /Zn2+ co-insertion/extraction mechanism in TAP, which is ascribed to the steric effect on the availability of active CN sites. Moreover, Ti3 C2 Tx , as a conductive scaffold, favors fast Zn2+ diffusion to boost the electrode kinetics of TAP. Close electronic interactions between TAP and Ti3 C2 Tx preserve the structural integrity of TAP/Ti3 C2 Tx during the repeated charge/discharge. Accordingly, the TAP/Ti3 C2 Tx cathode delivers a high reversible capacity of 303 mAh g-1 at 0.04 A g-1 in aqueous ZIBs, which also realizes an ultralong lifetime over 10 000 cycles with a capacity retention of 81.6%. Furthermore, flexible Zn||TAP/Ti3 C2 Tx batteries with a quasi-solid-state electrolyte demonstrate potential application in wearable electronic devices. This work offers pivotal guidance to create highly stable organic electrodes for advanced ZIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA