Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 8(6): 2709-2723, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35574832

RESUMO

Device-associated infections remain a clinical challenge. The common strategies to prevent bacterial infection are either toxic to healthy mammalian cells and tissue or involve high doses of antibiotics that can prompt long-term negative consequences. An antibiotic-free coating strategy to suppress bacterial growth is presented herein, which concurrently promotes bone cell growth and moderates the dissolution kinetics of resorbable magnesium (Mg) biomaterials. Pure Mg as a model biodegradable material was coated with gallium-doped strontium-phosphate through a chemical conversion process. Gallium was distributed in a gradual manner throughout the strontium-phosphate coating, with a compact structure and a gallium-rich surface. It was demonstrated that the coating protected the underlying Mg parts from significant degradation in minimal essential media at physiological conditions over 9 days. In terms of bacteria culture, the liberated gallium ions from the coatings upon Mg specimens, even though in minute quantities, inhibited the growth of Gram-positiveStaphylococcus aureus, Gram-negative Escherichia coli, andPseudomonas aeruginosa ─ key pathogens causing infection and early failure of the surgical implantations in orthopedics and trauma. More importantly, the gallium dopants displayed minimal interferences with the strontium-phosphate-based coating which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures. This work provides a new strategy to prevent bacterial infection and control the degradation behavior of Mg-based orthopedic implants, while preserving osteogenic features of the devices.


Assuntos
Gálio , Ortopedia , Animais , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Gálio/farmacologia , Magnésio/farmacologia , Mamíferos , Fosfatos/química , Fosfatos/farmacologia , Estrôncio/química , Estrôncio/farmacologia
2.
ACS Appl Mater Interfaces ; 12(41): 46862-46873, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32960039

RESUMO

Device-associated infection is one of the significant challenges in the biomedical industry and clinical management. Controlling the initial attachment of microbes upon the solid surface of biomedical devices is a sound strategy to minimize the formation of biofilms and infection. A synergistic coating strategy combining superhydrophobicity and bactericidal photodynamic therapy is proposed herein to tackle infection issues for biomedical materials. A multifunctional coating is produced upon pure Mg substrate through a simple blending procedure without involvement of any fluoride-containing agents, differing from the common superhydrophobic surface preparations. Superhydrophobic features of the coating are confirmed through water contact angle measurements (152.5 ± 1.9°). In vitro experiments reveal that bacterial-adhesion repellency regarding both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains approaches over 96%, which is evidently ascribed to the proposed synergistic strategy, that is, superhydrophobic nature and microbicidal ability of photodynamic therapy. Electrochemical analysis indicates that the superhydrophobic coating provides pronounced protection against corrosion to underlying Mg with 80% reduction in the corrosion rate in minimum essential medium and retains the original surface features after 168 h exposure to neutral salt spray. The proof-of-concept research holds a great promise for tackling the notorious bacterial infection and poor corrosion resistance of Mg-based biodegradable materials in a simple, efficient, and environmentally benign manner.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Magnésio/farmacologia , Fotoquimioterapia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Interações Hidrofóbicas e Hidrofílicas , Magnésio/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície
3.
J Chromatogr A ; 961(2): 155-70, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-12184617

RESUMO

A model theory of concentration effects for polydisperse polymers was proposed in 1988. It is successful in relating the concentration of the injected solution to the effective hydrodynamic volumes of peak, the retention volumes of peak and the polydispersity index (Dc = (Vhcw)/(Vhcn) of hydro-dynamic volume distribution for polydisperse polymers at a given concentration. The dependence of the concentration of injected polymer solution on the effective hydrodynamic volumes, the retention volumes of peak and the polydispersity index of hydrodynamic volume distribution for narrow disperse and polydisperse polystyrene, poly(dodecyl methacrylate), poly(tridecyl methacrylate) and poly(methyl methacrylate) in tetrahydrofuran solvent were studied. The proposed theory was verified by these experimental data. Results show that the proposed theory can predict the concentration effects in GPC for polydisperse polymers quantitatively and can provide a theoretical foundation for the two methods of calibrating the universal calibration curves with polydisperse polymers and of determining the second virial coefficients (A2) of polymers. It is found that the determined values of A2 for narrow disperse and polydisperse polymers by the proposed method are in agreement with those obtained by the LALLS method, and the two universal calibration curves with narrow disperse and polydisperse polymers are in excellent agreement.


Assuntos
Cromatografia em Gel/métodos , Modelos Teóricos , Polímeros/química , Calibragem , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...