Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Anim Resour ; 39(4): 601-609, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31508590

RESUMO

Bifidobacterium longum KACC 91563 secretes family 5 extracellular solute-binding protein via extracellular vesicle. In our previous work, it was demonstrated that the protein effectively alleviated food allergy symptoms via mast cell specific apoptosis, and it has revealed a therapeutic potential of this protein in allergy treatment. In the present study, we cloned the gene encoding extracellular solute-binding protein of the strain into the histidine-tagged pET-28a(+) vector and transformed the resulting plasmid into the Escherichia coli strain BL21 (DE3). The histidine-tagged extracellular solute-binding protein expressed in the transformed cells was purified using Ni-NTA affinity column. To enhance the efficiency of the protein purification, three parameters were optimized; the host bacterial strain, the culturing and induction temperature, and the purification protocol. After the process, two liters of transformed culture produced 7.15 mg of the recombinant proteins. This is the first study describing the production of extracellular solute-binding protein of probiotic bacteria. Establishment of large-scale production strategy for the protein will further contribute to the development of functional foods and potential alternative treatments for allergies.

2.
Food Sci Anim Resour ; 39(2): 255-265, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31149667

RESUMO

This study aimed to examine the quality characteristics of fermented milk, Mozzarella cheese, and Gouda cheese from Jersey and Holstein milk. The fermented milk, Mozzarella cheese, and Gouda cheese made from the Jersey breed exhibited higher fat, calcium, and phosphorous contents than those from the Holstein breed. The proportion of saturated fatty acids such as palmitic acid and stearic acid was higher in dairy products made from Jersey than those made from Holstein, as was the component ratio of unsaturated fatty acids containing oleic acid and linoleic acid. In the sensory evaluations of fermented milk and Mozzarella cheese, the preference scores of products from Jersey were lower in color, flavor, texture, taste, and general preference than those from Holstein. In terms of sensory preference, it is considered that Jersey milk may be more appropriate for ripened cheese than fermented milk and fresh cheese. Therefore, Jersey milk is expected to contribute to the diversification of dairy products and to provide consumers with high quality nutrition.

3.
Korean J Food Sci Anim Resour ; 38(5): 981-994, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30479505

RESUMO

The present study aimed at evaluating the utilization possibility of encapsulated probiotic Bifidobacterium longum for production of functional fermented sausages. The B. longum isolated from the feces samples of healthy Korean infants encapsulated with glycerol as a cryprotectant was used for fermented sausages production as a functional bacterial ingredient, and its effect was also compared with those inoculated with commercial starter culture (CSC). Results showed that most inoculated encapsulated B. longum (initial count, 5.88 Log CFU/g) could survive after 4 days fermentation (5.40 Log CFU/g), and approximately a half (2.83 Log CFU/g) of them survived in the products after 22 days of ripening. The products inoculated with encapsulated B. longum presented the lowest lipid oxidation level, while had higher total unsaturated fatty acid content and more desirable n-6/n-3 fatty acids than those inoculated with CSC or non-inoculated control. Moreover, the odor and taste scores in the samples made with B. longum were comparable to those in the treatment with CSC. The inoculation with the B. longum had no effects on the biogenic amine contents as well as did not cause defects in color or texture of the final products. Thus, the encapsulation could preserve the probiotic B. longum in the meat mixture, and the encapsulated B. longum could be used as a functional ingredient for production of healthier fermented meat products.

4.
Korean J Food Sci Anim Resour ; 37(5): 773-779, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29147101

RESUMO

The effect of addition of the probiotic Bifidobacterium longum KACC 91563 on the chemical and sensory properties of Kwark cheese produced using CHN-11 as a cheese starter were investigated. The addition of B. longum KACC 91563 to Kwark cheese did not change the composition or pH value of the cheese, compared with control. B. longum KACC 91563 survived at a level of 7.58 Log CFU/g and did not have any negative effect on survival of the cheese starter. A sensory panel commented that the addition of B. longum KACC 91563 made Kwark cheese more desirable to consumers, and that the probiotic supplementation had no effect on perceived taste. Thus, B. longum KACC 91563 can be used for inclusion of probiotic bacteria in cheese.

5.
Korean J Food Sci Anim Resour ; 37(3): 368-375, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28747822

RESUMO

Clostridium difficile infection (CDI) is the main cause of hospital-acquired diarrhea that can cause colitis or even death. The medical-treatment cost and deaths caused by CDI are increasing annually worldwide. New approaches for prevention and treatment of these infections are needed, such as the use of probiotics. Probiotics, including Bifidobacterium spp. and Lactobacillus, are microorganisms that confer a health benefit to the host when administered in adequate amounts. The effect of Bifidobacterium longum ATCC 15707 on infectious disease caused by C. difficile 027 was investigated in a mouse model. The survival rates for mice given the pathogen alone, and with live cells, or dead cells of B. longum were 40, 70, and 60%, respectively. In addition, the intestinal tissues of the B. longum-treated group maintained structural integrity with some degree of damage. These findings suggested that B. longum ATCC 15707 has a function in repressing the infectious disease caused by C. difficile 027.

6.
J Food Sci ; 80(12): M2925-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26556797

RESUMO

Clostridium difficile infection (CDI) is the most prevalent cause of health-care-associated infections. CDI-related health-care costs and deaths are both increasing annually on a global scale. C. difficile have been reported in food products in Canada, Europe, and the United States; however, the systematic transmission of C. difficile between humans and animals is yet to be understood. Because of the limitations of current therapeutic options, there is a need for the development of new patient treatments. Epigallocatechin gallate (EGCG) is a major catechin compound found in green tea extracts and exhibits antioxidant and antimicrobial activities. This study was conducted to investigate the inhibitory effects of EGCG on the expression of virulence genes in C. difficile and in C. difficile-associated diseases by inhibition of quorum sensing. The protein expression of autoinducer-2 (AI-2) was evaluated by AI-2 activity. EGCG at various concentrations had an inhibitory effect on AI-2 production, especially at 10 µg/mL. EGCG also significantly repressed the transcription of virulence genes, including luxS and tcdA, and prolonged the survival of Caenorhabditis elegans infected with C. difficile. Furthermore, treatment with EGCG effectively protected C. difficile-infected mice from C. difficile-induced death. Histological analysis of the colon and cecum of these mice revealed that EGCG protected tissues of the lower intestinal tract from damage. EGCG exerted growth-inhibitory and bactericidal activities on C. difficile in C. difficile-infected mice. Our results suggest that EGCG has significant antipathogenic effects on C. difficile and can be used to prevent or treat C. difficile-associated diseases or C. difficile infections.


Assuntos
Antibacterianos/uso terapêutico , Camellia sinensis/química , Catequina/análogos & derivados , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Fitoterapia , Virulência/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Caenorhabditis elegans , Catequina/farmacologia , Catequina/uso terapêutico , Clostridioides difficile/genética , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Homosserina/análogos & derivados , Homosserina/metabolismo , Lactonas/metabolismo , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Reação em Cadeia da Polimerase , Percepção de Quorum , Ribotipagem , Especificidade da Espécie , Virulência/genética
7.
Korean J Food Sci Anim Resour ; 35(4): 551-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26761878

RESUMO

The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...