Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Adv Sci (Weinh) ; 11(19): e2400403, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483033

RESUMO

Improving interface connectivity of magnetic nanoparticles in carbon aerogels is crucial, yet challenging for assembling lightweight, elastic, high-performance, and multifunctional carbon architectures. Here, an in situ growth strategy to achieve high dispersion of metal-organic frameworks (MOFs)-anchored cellulose nanofibrils to enhance the interface connection quality is proposed. Followed by a facile freeze-casting and carbonization treatment, sustainable biomimetic porous carbon aerogels with highly dispersed and closely connected MOF-derived magnetic nano-capsules are fabricated. Thanks to the tight interface bonding of nano-capsule microstructure, these aerogels showcase remarkable mechanical robustness and flexibility, tunable electrical conductivity and magnetization intensity, and excellent electromagnetic wave absorption performance. Achieving a reflection loss of -70.8 dB and a broadened effective absorption bandwidth of 6.0 GHz at a filling fraction of merely 2.2 wt.%, leading to a specific reflection loss of -1450 dB mm-1, surpassing all carbon-based aerogel absorbers so far reported. Meanwhile, the aerogel manifests high magnetic sensing sensibility and excellent thermal insulation. This work provides an extendable in situ growth strategy for synthesizing MOF-modified cellulose nanofibril structures, thereby promoting the development of high-value-added multifunctional magnetic carbon aerogels for applications in electromagnetic compatibility and protection, thermal management, diversified sensing, Internet of Things devices, and aerospace.

2.
Nat Commun ; 15(1): 2607, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521827

RESUMO

Artificial intelligence has gained significant attention for exploiting optical scattering for optical encryption. Conventional scattering media are inevitably influenced by instability or perturbations, and hence unsuitable for long-term scenarios. Additionally, the plaintext can be easily compromised due to the single channel within the medium and one-to-one mapping between input and output. To mitigate these issues, a stable spin-multiplexing disordered metasurface (DM) with numerous polarized transmission channels serves as the scattering medium, and a double-secure procedure with superposition of plaintext and security key achieves two-to-one mapping between input and output. In attack analysis, when the ciphertext, security key, and incident polarization are all correct, the plaintext can be decrypted. This system demonstrates excellent decryption efficiency over extended periods in noisy environments. The DM, functioning as an ultra-stable and active speckle generator, coupled with the double-secure approach, creates a highly secure speckle-based cryptosystem with immense potentials for practical applications.

3.
Eur J Pharmacol ; 970: 176485, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492878

RESUMO

Alzheimer's disease (AD) exhibits a higher incidence rate among older women, and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis during aging is associated with cognitive impairments and the development of dementia. luteinizing hormone (LH) has an important role in CNS function, such as mediating neuronal pregnenolone production, and modulating neuronal plasticity and cognition. The sex differences in LH and its impact on Aß deposition in AD individuals remain unclear, with no reported specific mechanisms. Here, we show through data mining that LH-related pathways are significantly enriched in female AD patients. Additionally, LH levels are elevated in female AD patients and exhibit a negative correlation with cognitive levels but a positive correlation with AD pathology levels, and females exhibit a greater extent of AD pathology, such as Aß deposition. In vivo, we observed that the exogenous injection of LH exacerbated behavioral impairments induced by Aß1-42 in mice. LH injection resulted in worsened neuronal damage and increased Aß deposition. In SH-SY5Y cells, co-administration of LH with Aß further exacerbated Aß-induced neuronal damage. Furthermore, LH can dose-dependently decrease the levels of NEP and LHR proteins while increasing the expression of GFAP and IBA1 in vivo and in vitro. Taken together, these results indicate that LH can exacerbate cognitive impairment and neuronal damage in mice by increasing Aß deposition. The potential mechanism may involve the reduction of NEP and LHR expression, along with the exacerbation of Aß-induced inflammation.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fragmentos de Peptídeos , Feminino , Humanos , Camundongos , Masculino , Animais , Idoso , Doença de Alzheimer/metabolismo , Hormônio Luteinizante , Caracteres Sexuais , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo
4.
Blood Cancer Discov ; 5(2): 106-113, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194367

RESUMO

A subset of patients with diffuse large B-cell lymphoma (DLBCL) treated with CD19 chimeric antigen receptor (CAR) T-cell therapy have poor clinical outcomes. We report serum proteins associated with severe immune-mediated toxicities and inferior clinical responses in 146 patients with DLBCL treated with axicabtagene ciloleucel. We develop a simple stratification based on pre-lymphodepletion C reactive protein (CRP) and ferritin to classify patients into low-, intermediate-, and high-risk groups. We observe that patients in the high-risk category were more likely to develop grade ≥3 toxicities and had inferior overall and progression-free survival. We sought to validate our findings with two independent international cohorts demonstrating that patients classified as low-risk have excellent efficacy and safety outcomes. Based on routine and readily available laboratory tests that can be obtained prior to lymphodepleting chemotherapy, this simple risk stratification can inform patient selection for CAR T-cell therapy. SIGNIFICANCE: CAR T-cell therapy has changed the treatment paradigm for patients with relapsed/refractory hematologic malignancies. Despite encouraging efficacy, a subset of patients have poor clinical outcomes. We show that a simple clinically applicable model using pre-lymphodepletion CRP and ferritin can identify patients at high risk of poor outcomes. This article is featured in Selected Articles from This Issue, p. 80.


Assuntos
Neoplasias Hematológicas , Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/uso terapêutico , Linfoma Difuso de Grandes Células B/terapia , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19/uso terapêutico , Proteínas Sanguíneas , Proteína C-Reativa , Ferritinas
5.
Nat Commun ; 15(1): 232, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177166

RESUMO

Exceptional points (EPs) can achieve intriguing asymmetric control in non-Hermitian systems due to the degeneracy of eigenstates. Here, we present a general method that extends this specific asymmetric response of EP photonic systems to address any arbitrary fully-polarized light. By rotating the meta-structures at EP, Pancharatnam-Berry (PB) phase can be exclusively encoded on one of the circular polarization-conversion channels. To address any arbitrary wavefront, we superpose the optical signals originating from two orthogonally polarized -yet degenerate- EP eigenmodes. The construction of such orthogonal EP eigenstates pairs is achieved by applying mirror-symmetry to the nanostructure geometry flipping thereby the EP eigenmode handedness from left to right circular polarization. Non-Hermitian reflective PB metasurfaces designed using such EP superposition enable arbitrary, yet unidirectional, vectorial wavefront shaping devices. Our results open new avenues for topological wave control and illustrate the capabilities of topological photonics to distinctively operate on arbitrary polarization-state with enhanced performances.

6.
Sensors (Basel) ; 24(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257698

RESUMO

The bent-blade cutter is widely used in machining typical deep-cavity parts such as turbine discs and disc shafts, but few scholars have studied the dynamics of the turning process. The existing mechanism of regenerative chatter in the metal-cutting process does not consider the influence of bending and torsional vibration, the change of tool profile and the complex machining geometry, so it cannot be directly used to reveal the underlying cause of the chatter phenomena in the deep inner cavity part turning process. This paper attempts to investigate the dynamic problem of the bent-blade cutter turning process. The dynamic model of a bent-blade cutter is proposed by considering the regenerative chatter effect. Based on the extended Timoshenko beam element (E-TBM) theory and finite element method (FEM), the coupling between the bending vibrations and the torsional vibrations, as well as the dynamic cutting forces, are modeled along the turning path. The vibration characteristics of the bending-torsion combination of cutter board and cutter bar, together with the dynamical governing equation, were analyzed theoretically. The chatter stability of a bent-blade cutter with a bending and torsion combination effect is predicted in the turning process. A series of turning experiments are carried out to verify the accuracy and efficiency of the presented model. Furthermore, the influence of cutting parameters on the cutting process is analyzed, and the results can be used to optimize the cutting parameters for suppressing machining vibration and improving machining process stability.

7.
Nano Lett ; 24(3): 844-851, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190513

RESUMO

Holography holds tremendous promise in applications such as immersive virtual reality and optical communications. With the emergence of optical metasurfaces, planar optical components that have the remarkable ability to precisely manipulate the amplitude, phase, and polarization of light on the subwavelength scale have expanded the potential applications of holography. However, the realization of metasurface-based full-color vectorial holography remains particularly challenging. Here, we report a general approach utilizing a modified Gerchberg-Saxton algorithm to achieve spatially aligned full-color display and incorporating wavelength information with an image compensation strategy. We combine the Pancharatnam-Berry phase and pairs of exceptional points to address the issue of redundant twin images that generally appear for the two orthogonal circular polarizations and to enable full polarization control of the vectorial field. Our results enable the realization of an asymmetric full-color vectorial meta-hologram, paving the way for the development of full-color display, complex beam generation, and secure data storage applications.

8.
Psychopharmacology (Berl) ; 241(3): 525-542, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277004

RESUMO

RATIONALE: The plasma ceramide levels in Alzheimer's disease (AD) patients are found abnormally elevated, which is related to cognitive decline. OBJECTIVES: This research was aimed to investigate the mechanisms of aberrant elevated ceramides in the pathogenesis of AD. RESULTS: The ICR mice intracerebroventricularly injected with Aß1-42 and APP/PS1 transgenic mice were employed as AD mice. The cognitive deficiency, impaired episodic and spatial memory were observed without altered spontaneous ability. The serum levels of p-tau and ceramide were evidently elevated. The modified expressions and activities of glycogen synthase kinase-3ß (GSK-3ß) and protein phosphatase 2A (PP2A) influenced the serum content of p-tau. The levels of ceramide synthesis-related genes including sptlc1, sptlc2, cers2, and cers6 in the liver of AD mice were increased, while the ceramide degradation-related gene asah2 did not significantly change. The regulations of these genes were conducted by activated nuclear factor kappa-B (NF-κB) signaling. NF-κB, promoted by free fatty acid (FFA), also increased the hepatic concentrations of proinflammatory cytokines. The FFA amount was modulated by fatty acid synthesis-related genes acc1 and srebp-1c. Besides, the decreased levels of pre-proopiomelanocortin (pomc) mRNA and increased agouti-related protein (agrp) mRNA were found in the hypothalamus without significant alteration of melanocortin receptor 4 (MC4R) mRNA. The bioinformatic analyses proved the results using GEO datasets and AlzData. CONCLUSIONS: Ceramide was positively related to the increased p-tau and impaired cognitive function. The increased generation of ceramide and endoplasmic reticulum stress in the hypothalamus was positively related to fatty acid synthesis and NF-κB signaling via brain-liver axis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , NF-kappa B , Ceramidas/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos Endogâmicos ICR , Camundongos Transgênicos , RNA Mensageiro , Ácidos Graxos , Proteínas tau/metabolismo
9.
Nano Lett ; 24(1): 104-113, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943097

RESUMO

Optical meron is a type of nonplanar topological texture mainly observed in surface plasmon polaritons and highly symmetric points of photonic crystals in the reciprocal space. Here, we report Poynting-vector merons formed at the real space of a photonic crystal for a Γ-point illumination. Optical merons can be utilized for subwavelength-resolution manipulation of nanoparticles, resembling a topological Hall effect on electrons via magnetic merons. In particular, staggered merons and antimerons impose strong radiation pressure on large gold nanoparticles (AuNPs), while focused hot spots in antimerons generate dominant optical gradient forces on small AuNPs. Synergistically, differently sized AuNPs in a still environment can be trapped or orbit in opposite directions, mimicking a coupled galaxy system. They can also be separated with a 10 nm precision when applying a flow velocity of >1 mm/s. Our study unravels a novel way to exploit topological textures for optical manipulation with deep-subwavelength precision and switchable topology in a lossless environment.

10.
Rev Neurosci ; 35(3): 341-354, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38157427

RESUMO

Sex differences exist in the onset and progression of Alzheimer's disease. Globally, women have a higher prevalence, while men with Alzheimer's disease experience earlier mortality and more pronounced cognitive decline than women. The cause of sex differences in Alzheimer's disease remains unclear. Accumulating evidence suggests the potential role of X-linked genetic factors in the sex difference of Alzheimer's disease (AD). During embryogenesis, a remarkable process known as X-chromosome inactivation (XCI) occurs in females, leading to one of the X chromosomes undergoing transcriptional inactivation, which balances the effects of two X chromosomes in females. Nevertheless, certain genes exceptionally escape from XCI, which provides a basis for dual expression dosage of specific genes in females. Based on recent research findings, we explore key escape genes and their potential therapeutic use associated with Alzheimer's disease. Also, we discuss their possible role in driving the sex differences in Alzheimer's disease. This will provide new perspectives for precision medicine and gender-specific treatment of AD.


Assuntos
Doença de Alzheimer , Cromossomos Humanos X , Feminino , Humanos , Masculino , Cromossomos Humanos X/genética , Caracteres Sexuais , Doença de Alzheimer/genética , Inativação do Cromossomo X/genética , Genes Ligados ao Cromossomo X
11.
Biomed Mater ; 19(1)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048625

RESUMO

Extracellular matrix (ECM) scaffolds are widely applied in the field of regeneration as the result of their irreplaceable biological advantages, and the preparation of ECM scaffolds into ECM hydrogels expands the applications to some extent. However, weak mechanical properties of current ECM materials limit the complete exploitation of ECM's biological advantages. To enable ECM materials to be utilized in applications requiring high strength, herein, we created a kind of new ECM material, ECM film, and evaluated its mechanical properties. ECM films exhibited outstanding toughness with no cracks after arbitrarily folding and crumpling, and dramatically high strength levels of 86 ± 17.25 MPa, the maximum of which was 115 MPa. Such spectacular high-strength and high-toughness films, containing only pure ECM without any crosslinking agents and other materials, far exceed current pure natural polymer gel films and even many composite gel films and synthetic polymer gel films. In addition, both PC12 cells and Schwann cells cultured on the surface of ECM films, especially Schwann cells, showed good proliferation, and the neurite outgrowth of the PC12 cells was promoted, indicating the application potential of ECM film in peripheral nerve repair.


Assuntos
Matriz Extracelular , Polímeros , Ratos , Animais , Matriz Extracelular/fisiologia , Células de Schwann , Hidrogéis , Alicerces Teciduais
12.
Nat Commun ; 14(1): 6481, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838720

RESUMO

The realization of operationally stable blue organic light-emitting diodes is a challenging issue across the field. While device optimization has been a focus to effectively prolong device lifetime, strategies based on molecular engineering of chemical structures, particularly at the subatomic level, remains little. Herein, we explore the effect of targeted deuteration on donor and/or acceptor units of thermally activated delayed fluorescence emitters and investigate the structure-property relationship between intrinsic molecular stability, based on isotopic effect, and device operational stability. We show that the deuteration of the acceptor unit is critical to enhance the photostability of thermally activated delayed fluorescence compounds and hence device lifetime in addition to that of the donor units, which is commonly neglected due to the limited availability and synthetic complexity of deuterated acceptors. Based on these isotopic analogues, we observe a gradual increase in the device operational stability and achieve the long-lifetime time to 90% of the initial luminance of 23.4 h at the luminance of 1000 cd m-2 for thermally activated delayed fluorescence-sensitized organic light-emitting diodes. We anticipate our strategic deuteration approach provides insights and demonstrates the importance on structural modification materials at a subatomic level towards prolonging the device operational stability.

14.
Anal Chim Acta ; 1279: 341685, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827660

RESUMO

Micromixers are characterized based on characteristics such as excellent mixing efficiency, low reagent cost and flexible controllability compared with conventional reactors in terms of macro size. A variety of designs and applications of micromixers have been proposed. The focus of current reviews is restricted to micromixer structures. Each type of micromixer has characteristics corresponding to its structure, which determines the suitable application areas. This paper provides an overview connecting micromixer designs and their applications. First, the typical designs and mixing mechanisms of both passive and active micromixers are summarized. Then, application cases of micromixers, including chemical, biological and medical applications, are presented. The characteristics, including the advantages and restrictions of different micromixers, are discussed. Finally, the future perspective of micromixer design is proposed. It is predictable that micromixers will have widespread applications by integrating two or more different mixing methods together. This review would be beneficial to guide the design of micromixers applied for specific purposes.

15.
ACS Omega ; 8(32): 29758-29769, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599966

RESUMO

Micromixers offer the advantage of rapid and homogeneous mixing compared with conventional macroscale reaction systems, and thus they show great potential for the synthesis of nanoparticles. An ellipse curve serpentine micromixer, which had been proposed in our prior works was employed to synthesize Cu2O nanoparticles. Cu2O are excellent photocatalysts that have been widely utilized in the degradation of organic dyes. Owing to the excellent mixing performance, the reduction of Cu(OH)2 in micromixing synthesis was more sufficient than that in conventional stirring synthesis. The Cu2O nanoparticles synthesized by micromixing had smaller size and narrower size distribution compared with those synthesized by stirring in a beaker. The smallest Cu2O nanoparticles were obtained by micromixing with Re = 100 at T = 60 °C, while the most uniform Cu2O nanoparticles were obtained at T = 80 °C owing to Ostwald ripening. Through the photocatalytic degradation experiments of Rhodamine B, the Cu2O nanoparticles synthesized by micromixing were found to have better photocatalysis than those synthesized by stirring. The research results showed that the micromixing synthesis was a more suitable choice to produce Cu2O nanoparticles with excellent photocatalysis. The ellipse curve micromixer with a simple structure and high mixing performance can be applied in the synthesis of various nanoparticles.

16.
RSC Adv ; 13(29): 20365-20372, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425627

RESUMO

Gallium-based liquid metal (GLM) is a promising lubricant candidate due to its high load capacity and high thermal stability. However, the lubrication performance of GLM is restricted by its metallic characteristics. Herein, this work proposes a facile method to obtain a GLM@MoS2 composite by integrating GLM with MoS2 nanosheets. The incorporation of MoS2 imparts GLM with different rheological properties. Since GLM is able to be separated from the GLM@MoS2 composite and agglomerates into bulk liquid metal again in alkaline solution, the bonding between GLM and MoS2 nanosheets is reversible. Moreover, our frictional tests demonstrate that the GLM@MoS2 composite exhibits enhanced tribological performance including reduction of friction coefficient and wear rate by 46% and 89%, respectively, in contrast to the pure GLM.

17.
Small ; 19(44): e2302072, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431202

RESUMO

Spectrally selective narrowband photodetection is critical for near-infrared (NIR) imaging applications, such as for communicationand night-vision utilities. It is a long-standing challenge for detectors based on silicon, to achieve narrowband photodetection without integrating any optical filters. Here, this work demonstrates a NIR nanograting Si/organic (PBDBT-DTBT:BTP-4F) heterojunction photodetector (PD), which for the first time obtains the full-width-at-half-maximum (FWHM) of only 26 nm and fast response of 74 µs at 895 nm. The response peak can be successfully tailored from 895 to 977 nm. The sharp and narrow response NIR peak is inherently attributed to the coherent overlapping between the NIR transmission spectrum of organic layer and diffraction enhanced absorption peak of patterned nanograting Si substrates. The finite difference time domain (FDTD) physics calculation confirms the resonant enhancement peaks, which is well consistent with the experiment results. Meanwhile, the relative characterization indicates that the introduction of the organic film can promote carrier transfer and charge collection, facilitating efficient photocurrent generation. This new device design strategy opens up a new window in developing low-cost sensitive NIR narrowband detection.

18.
Polymers (Basel) ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299317

RESUMO

Three-dimensional (3D) printing technology is advantageous in the fast prototyping of complex structures, but its utilization in functional material fabrication is still limited due to a lack of activation capability. To fabricate and activate the functional material of electrets, a synchronized 3D printing and corona charging method is presented to prototype and polarize polylactic acid electrets in one step. By upgrading the 3D printer nozzle and incorporating a needle electrode to apply high voltage, parameters such as needle tip distance and applied voltage level were compared and optimized. Under different experimental conditions, the average surface distribution in the center of the samples was -1498.87 V, -1115.73 V, and -814.51 V. Scanning electron microscopy results showed that the electric field contributes to keeping the printed fiber structure straight. The polylactic acid electrets exhibited relatively uniform surface potential distribution on a sufficiently large sample surface. In addition, the average surface potential retention rate was improved by 12.021-fold compared to ordinary corona-charged samples. The above advantages are unique to the 3D-printed and polarized polylactic acid electrets, proving that the proposed method is suitable for quickly prototyping and effectively polarizing the polylactic acid electrets simultaneously.

19.
Micromachines (Basel) ; 14(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37374849

RESUMO

TiAlN-coated carbide tools have been used to machine Ti-6Al-4V alloys in aviation workshops. However, the effect of TiAlN coating on surface morphology and tool wear in the processing of Ti-6Al-4V alloys under various cooling conditions has not been reported in the public published literature. In our current research, turning experiments of Ti-6Al-4V with uncoated and TiAlN tools under dry, MQL, flood cooling, and cryogenic spray jet cooling conditions were carried out. The machined surface roughness and tool life were selected as the two main quantitative indexes for estimating the effects of TiAlN coating on the cutting performance of Ti-6Al-4V under various cooling conditions. The results showed that TiAlN coating makes it hard to improve the machined surface roughness and tool wear of a cutting titanium alloy at a low speed of 75 m/min compared to that achieved by uncoated tools. The TiAlN tools presented excellent tool life in turning Ti-6Al-4V at a high speed of 150 m/min compared to that achieved by uncoated tools. From the perspective of obtaining finished surface roughness and superior tool life in high-speed turning Ti-6Al-4V, the selection of TiAlN tools is feasible and reasonable under the cryogenic spray jet cooling condition. The dedicative results and conclusions of this research could guide the optimized selection of cutting tools in machining Ti-6Al-4V for the aviation industry.

20.
Light Sci Appl ; 12(1): 66, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36878927

RESUMO

Arbitrary polarized vortex beam induced by polarization singularity offers a new platform for both classical optics and quantum entanglement applications. Bound states in the continuum (BICs) have been demonstrated to be associated with topological charge and vortex polarization singularities in momentum space. For conventional symmetric photonic crystal slabs (PhCSs), BIC is enclosed by linearly polarized far fields with winding angle of 2π, which is unfavorable for high-capacity and multi-functionality integration-optics applications. Here, we show that by breaking σz-symmetry of the PhCS, asymmetry in upward and downward directions and arbitrarily polarized BIC can be realized with a bilayer-twisted PhCS. It exhibits elliptical polarization states with constant ellipticity angle at every point in momentum space within the vicinity of BIC. The topological nature of BIC reflects on the orientation angle of polarization state, with a topological charge of 1 for any value of ellipticity angle. Full coverage of Poincaré sphere (i.e., [Formula: see text] and [Formula: see text]) and higher-order Poincaré sphere can be realized by tailoring the twist angles. Our findings may open up new avenues for applications in structured light, quantum optics, and twistronics for photons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...