Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 240: 152993, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31212102

RESUMO

Posttranslational modification of proteins by the small ubiquitin-related modifier (SUMO) protein is involved in diverse cellular processes. In sumoylation, SUMO-conjugating enzyme (SCE) conjugates SUMO to substrate proteins. Similarly to yeast and animals, Arabidopsis encodes a single SCE gene, but other plants encode at least two SCE genes. In this study, we report the molecular characterization of three Oryza sativa SCE genes. Their levels of expression are commonly upregulated by drought stress but are differentially regulated by hormones and sugars. Only the OsSCE1 gene showed photoperiod- and light-dependent diurnal oscillations in the leaves. Yeast two-hybrid assays showed that OsSCEs do not show SUMO isoform specificity. Three rice OsSCE proteins localize primarily to the nucleus. Interestingly, OsSCE1 is distributed in specific parts of the nucleus and shows sumoylation activities in the absence of a SUMO ligase in E. coli. In addition, overexpression of the OsSCE1 gene alters the biomass and grain yield parameters in transgenic rice plants. Overexpression of the OsSCE3 gene in transgenic rice plants enhances drought stress tolerance. In contrast, OsSCE1-OX transgenic rice plants are hypersensitive to drought stress. Our results suggest that these genes may be involved in different cellular processes.


Assuntos
Secas , Oryza/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/metabolismo , Sumoilação
2.
Planta ; 249(5): 1521-1533, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30712129

RESUMO

MAIN CONCLUSION: OsbZIP42 is a positive regulator of ABA signaling and drought stress tolerance. The activation of OsbZIP42 depends on stress-/ABA-activated protein kinase 4 (SAPK4) and an additional ABA-dependent modification of OsbZIP42. Basic leucine zipper transcription factors (bZIP TFs) play important roles in the ABA signaling pathway in plants. Rice OsbZIP42 is a member of the group E bZIP, which is an ortholog of Arabidopsis group A bZIP. This latter group includes abscisic acid-responsive element (ABRE)-binding factors (ABFs) involved in abiotic stress tolerance. The expression of OsbZIP42 was induced by ABA treatment, although it was not induced by drought and salt stresses. Unlike other bZIP TFs, OsbZIP42 contained two transcriptional activation domains. Although the full-length OsbZIP42 protein did not, the N-terminus of the protein interacted with SAPK4. Our results suggest that the activation of OsbZIP42 by SAPK4 requires another ABA-dependent modification of OsbZIP42. Transgenic rice overexpressing OsbZIP42 (OsbZIP42-OX) exhibited a rapidly elevated expression of the ABA-responsive LEA3 and Rab16 genes and was hypersensitive to ABA. Analyses of the OsbZIP42-OX plants revealed enhanced tolerance to drought stress. These results suggest that OsbZIP42 is a positive regulator of ABA signaling and drought stress tolerance depending on its activation, which is followed by an additional ABA-dependent modification. We propose that OsbZIP42 is an important player in rice for conferring ABA-dependent drought tolerance.


Assuntos
Ácido Abscísico/farmacologia , Oryza/efeitos dos fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
Med Humanit ; 45(3): 288-294, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29970613

RESUMO

Written by Richard Wiseman, sergeant-surgeon to King Charles II of England, 'A Treatise on the King's-Evil' within his magnum opus Severall Chirurgicall Treatises (1676), acts as a proto-case series which explores the treatment and cure of 91 patients with the King's-Evil. Working within the confines of the English monarch's ability to cure the disease with their miraculous (or thaumaturgic) touch, Wiseman simultaneously elevates and extends the potential to heal to biomedicine. Wiseman's work on the King's-Evil provides an interesting window through which the political expediency of the monarch's thaumaturgic touch may be explored. The dependence of the thaumaturgic touch on liturgy, theatricality and its inherent political economy in Restoration England allowed Wiseman to appropriate the traditionally monarchical role of healer as his own, by drawing attention to a medical ritual of healing that was as reliant, just as the theatrical ritual of monarchical thaumaturgy was, on symbolic binaries of healer-healed, head-body and touch-sight.


Assuntos
Doença de Rei/história , Medicina na Literatura/história , Política , Inglaterra , História do Século XVII , Humanos
4.
Mol Cells ; 41(8): 781-798, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30078233

RESUMO

Plants have evolved strategies to cope with drought stress by maximizing physiological capacity and adjusting developmental processes such as flowering time. The WOX13 orthologous group is the most conserved among the clade of WOX homeodomain-containing proteins and is found to function in both drought stress and flower development. In this study, we isolated and characterized OsWOX13 from rice. OsWOX13 was regulated spatially in vegetative organs but temporally in flowers and seeds. Overexpression of OsWOX13 (OsWOX13-ov) in rice under the rab21 promoter resulted in drought resistance and early flowering by 7-10 days. Screening of gene expression profiles in mature leaf and panicles of OsWOX13-ov showed a broad spectrum of effects on biological processes, such as abiotic and biotic stresses, exerting a cross-talk between responses. Protein binding microarray and electrophoretic mobility shift assay analyses supported ATTGATTG as the putative cis-element binding of OsWOX13. OsDREB1A and OsDREB1F, drought stress response transcription factors, contain ATTGATTG motif(s) in their promoters and are preferentially expressed in OsWOX13-ov. In addition, Heading date 3a and OsMADS14, regulators in the flowering pathway and development, were enhanced in OsWOX13-ov. These results suggest that OsWOX13 mediates the stress response and early flowering and, thus, may be a regulator of genes involved in drought escape.


Assuntos
Proteínas de Homeodomínio/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Secas , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
5.
Biochem J ; 469(2): 299-314, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26008766

RESUMO

Gibberellins affect various plant development processes including germination, cell division and elongation, and flowering. A large number of studies have been carried out to address the molecular mechanisms that mediate gibberellin signalling effects on plant growth. However, such studies have been limited to DELLA protein degradation; the regulatory mechanisms controlling how the stability and function of SLEEPY1 (SLY1), a protein that interacts with target DELLA proteins as components of the Skp, Cullin, F-box (SCF)(SLY1) complex, are modulated at the post-translational level have not been addressed. In the present study, we show that the E3 SUMO (small ubiquitin-related modifier) ligase AtSIZ1 regulates gibberellic acid signalling in Arabidopsis species by sumoylating SLY1. SLY1 was less abundant in siz1-2 mutants than in wild-type plants, but the DELLA protein repressor of ga1-3 (RGA) was more abundant in siz1-2 mutants than in wild-type plants. SLY1 also accumulated to a high level in the SUMO protease mutant esd4. Transgenic sly1-13 mutants over-expressing SLY1 were phenotypically similar to wild-type plants; however, sly1-13 plants over-expressing a mutated mSLY1 protein (K122R, a mutation at the sumoylation site) retained the mutant dwarfing phenotype. Over-expression of SLY1 in sly1-13 mutants resulted in a return of RGA levels to wild-type levels, but RGA accumulated to high levels in mutants over-expressing mSLY1. RGA was clearly detected in Arabidopsis co-expressing AtSIZ1 and mSLY1, but not in plants co-expressing AtSIZ1 and SLY1. In addition, sumoylated SLY1 interacted with RGA and SLY1 sumoylation was significantly increased by GA. Taken together, our results indicate that, in Arabidopsis, AtSIZ1 positively controls GA signalling through SLY1 sumoylation.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Ligases/metabolismo , Transdução de Sinais/fisiologia , Sumoilação/fisiologia , Alquil e Aril Transferases/genética , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Giberelinas/genética , Ligases/genética , Mutação de Sentido Incorreto , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
6.
BMB Rep ; 47(1): 27-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24209631

RESUMO

Plant abiotic stress tolerance has been modulated by engineering the trehalose synthesis pathway. However, many stress-tolerant plants that have been genetically engineered for the trehalose synthesis pathway also show abnormal development. The metabolic intermediate trehalose 6-phosphate has the potential to cause aberrations in growth. To avoid growth inhibition by trehalose 6-phosphate, we used a gene that encodes a bifunctional in-frame fusion (BvMTSH) of maltooligosyltrehalose synthase (BvMTS) and maltooligosyltrehalose trehalohydrolase (BvMTH) from the nonpathogenic bacterium Brevibacterium helvolum. BvMTS converts maltooligosaccharides into maltooligosyltrehalose and BvMTH releases trehalose. Transgenic rice plants that over-express BvMTSH under the control of the constitutive rice cytochrome c promoter (101MTSH) or the ABA-inducible Ai promoter (105MTSH) show enhanced drought tolerance without growth inhibition. Moreover, 101MTSH and 105MTSH showed an ABA-hyposensitive phenotype in the roots. Our results suggest that over-expression of BvMTSH enhances drought-stress tolerance without any abnormal growth and showes ABA hyposensitive phenotype in the roots.


Assuntos
Proteínas de Bactérias , Brevibacterium/enzimologia , Secas , Glucosidases , Glucosiltransferases , Ácido Abscísico/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Glucosidases/genética , Glucosidases/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Oligossacarídeos/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/metabolismo
7.
Mol Cells ; 35(5): 421-35, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23620302

RESUMO

The expression of the six rice ASR genes is differentially regulated in a tissue-dependent manner according to environmental conditions and reproductive stages. OsASR1 and OsASR3 are the most abundant and are found in most tissues; they are enriched in the leaves and roots, respectively. Coexpression analysis of OsASR1 and OsASR3 and a comparison of the cis-acting elements upstream of OsASR1 and OsASR3 suggested that their expression is regulated in common by abiotic stresses but differently regulated by hormone and sugar signals. The results of quantitative real-time PCR analyses of OsASR1 and OsASR3 expression under various conditions further support this model. The expression of both OsASR1 and OsASR3 was induced by drought stress, which is a major regulator of the expression of all ASR genes in rice. In contrast, ABA is not a common regulator of the expression of these genes. OsASR1 transcription was highly induced by ABA, whereas OsASR3 transcription was strongly induced by GA. In addition, OsASR1 and OsASR3 expression was significantly induced by sucrose and sucrose/glucose treatments, respectively. The induction of gene expression in response to these specific hormone and sugar signals was primarily observed in the major target tissues of these genes (i.e., OsASR1 in leaves and OsASR3 in roots). Our data also showed that the overexpression of either OsASR1 or OsASR3 in transgenic rice plants increased their tolerance to drought and cold stress. Taken together, our results revealed that the transcriptional control of different rice ASR genes exhibit different tissue-dependent sugar and hormone-sensitivities.


Assuntos
Oryza/metabolismo , Estresse Fisiológico , Temperatura Baixa , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
8.
Planta ; 238(1): 155-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23605194

RESUMO

Plant-specific ethylene response factors (ERFs) play important roles in abiotic and biotic stress responses in plants. Using a transgenic approach, we identified two rice ERF genes, OsERF4a and OsERF10a, which conferred drought stress tolerance. In particular, OsERF4a contains a conserved ERF-associated amphiphilic repression (EAR) motif in its C-terminal region that has been shown to function as a transcriptional repression domain. Expression profiling of transgenic rice plants over-expressing OsERF4a using either a constitutively active or an ABA-inducible promoter identified 45 down-regulated and 79 up-regulated genes in common. The increased stress tolerance by over-expression of the EAR domain-containing protein OsERF4a could result from suppression of a repressor of the defense response. Expression of the putative silent information regulator 2 (Sir2) repressor protein was repressed, and expression of several stress-response genes were induced by OsERF4a over-expression. The Sir2 and 7 out of 9 genes that were down-regulated by OsERF4a over-expression were induced by high salinity and drought treatments in non-transgenic control plants. Genes that were down- and up-regulated by OsERF4a over-expression were highly biased toward chromosome 11. Rice chromosome 11 has several large clusters of disease-resistance and defense-response genes. Taken together, our results suggest that OsERF4a is a positive regulator of shoot growth and water-stress tolerance in rice during early growth stages. We propose that OsERF4a could work by suppressing a repressor of the defense responses and/or by controlling the expression of a large number of genes located on chromosome 11.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas Repressoras/genética , Cromossomos de Plantas , Secas , Família Multigênica , Oryza/genética , Filogenia , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Proteínas Repressoras/metabolismo , Estresse Fisiológico/genética
9.
Plant J ; 65(6): 907-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21332845

RESUMO

Jasmonates play important roles in development, stress responses and defense in plants. Here, we report the results of a study using a functional genomics approach that identified a rice basic helix-loop-helix domain gene, OsbHLH148, that conferred drought tolerance as a component of the jasmonate signaling module in rice. OsbHLH148 transcript levels were rapidly increased by treatment with methyl jasmonate (MeJA) or abscisic acid, and abiotic stresses including dehydration, high salinity, low temperature and wounding. Transgenic over-expression of OsbHLH148 in rice confers plant tolerance to drought stress. Expression profiling followed by DNA microarray and RNA gel-blot analyses of transgenic versus wild-type rice identified genes that are up-regulated by OsbHLH148 over-expression. These include OsDREB and OsJAZ genes that are involved in stress responses and the jasmonate signaling pathway, respectively. OsJAZ1, a rice ZIM domain protein, interacted with OsbHLH148 in yeast two-hybrid and pull-down assays, but it interacted with the putative OsCOI1 only in the presence of coronatine. Furthermore, the OsJAZ1 protein was degraded by rice and Arabidopsis extracts in the presence of coronatine, and its degradation was inhibited by MG132, a 26S proteasome inhibitor, suggesting 26S proteasome-mediated degradation of OsJAZ1 via the SCF(OsCOI1) complex. The transcription level of OsJAZ1 increased upon exposure of rice to MeJA. These results show that OsJAZ1 could act as a transcriptional regulator of the OsbHLH148-related jasmonate signaling pathway leading to drought tolerance. Thus, our study suggests that OsbHLH148 acts on an initial response of jasmonate-regulated gene expression toward drought tolerance, constituting the OsbHLH148-OsJAZ-OsCOI1 signaling module in rice.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclopentanos/metabolismo , Oryza/genética , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , DNA de Plantas/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Estresse Fisiológico , Regulação para Cima
10.
Transgenic Res ; 20(1): 153-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20490919

RESUMO

There is currently a shortage of efficient promoters for stress-inducible gene expression, especially in monocotyledonous crops. Here, we report analysis of the rice Wsi18 promoter, a member of the group 3 Lea family, in transgenic rice plants. The abundance of Wsi18 mRNA increased in leaf tissues within 2 h of exposure to NaCl or abscisic acid (ABA) and within 6 h of exposure to drought, but there was no transcript increase in response to low-temperature conditions. Wsi18 mRNA accumulated in the roots similarly to in the leaves, but at a faster rate. The promoter was linked to the GFP reporter gene, transformed into rice, and its activity was analyzed in transgenic plants at all stages of plant growth from calli, vegetative tissues, flowers, and to dry seeds, both before and after stress treatment. The activity of the promoter was significantly increased in the whole plant body, including flowers, on exposure of plants to stress conditions, with very low levels of basal activity in all tissues. Moreover, the promoter was found to be predominantly active in the whole grain, including endosperm, embryo, and aleurone layer during seed development. Together, we have identified and analyzed the Wsi18 promoter and found a previously undescribed characteristic-a stress-inducible property in the whole plant body with activity in the whole grain during seed development.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Oryza/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Ácido Abscísico/farmacologia , Sequência de Bases , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia
11.
Plant Physiol ; 151(1): 16-33, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19605550

RESUMO

Microarray data can be used to derive understanding of the relationships between the genes involved in various biological systems of an organism, given the availability of databases of gene expression measurements from the complete spectrum of experimental conditions and materials. However, there have been no reports, to date, of such a database being constructed for rice (Oryza sativa). Here, we describe the construction of such a database, called RiceArrayNet (RAN; http://www.ggbio.com/arraynet/), which provides information on coexpression between genes in terms of correlation coefficients (r values). The average number of coexpressed genes is 214, with sd of 440 at r >or= 0.5. Given the correlation between genes in a gene pair, the degrees of closeness between genes can be visualized in a relational tree and a relational network. The distribution of correlated genes according to degree of stringency shows how each gene is related to other genes. As an application of RAN, the 16-member L7Ae ribosomal protein family was explored for coexpressed genes and gene expression values within and between rice and Arabidopsis (Arabidopsis thaliana), and common and unique features in coexpression partners and expression patterns were observed for these family members. We observed a correlation pattern between Os01g0968800, a drought-responsive element-binding transcription factor, Os02g0790500, a trehalose-6-phosphate synthase, and Os06g0219500, a small heat shock factor, reflecting the fact that genes responding to the same biological stresses are regulated together. The RAN database can be used as a tool to gain insight into a particular gene by examining its coexpression partners.


Assuntos
Bases de Dados Factuais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Água/metabolismo
12.
Plant Physiol ; 146(2): 623-35, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18162593

RESUMO

AtMYB44 belongs to the R2R3 MYB subgroup 22 transcription factor family in Arabidopsis (Arabidopsis thaliana). Treatment with abscisic acid (ABA) induced AtMYB44 transcript accumulation within 30 min. The gene was also activated under various abiotic stresses, such as dehydration, low temperature, and salinity. In transgenic Arabidopsis carrying an AtMYB44 promoter-driven beta-glucuronidase (GUS) construct, strong GUS activity was observed in the vasculature and leaf epidermal guard cells. Transgenic Arabidopsis overexpressing AtMYB44 is more sensitive to ABA and has a more rapid ABA-induced stomatal closure response than wild-type and atmyb44 knockout plants. Transgenic plants exhibited a reduced rate of water loss, as measured by the fresh-weight loss of detached shoots, and remarkably enhanced tolerance to drought and salt stress compared to wild-type plants. Microarray analysis and northern blots revealed that salt-induced activation of the genes that encode a group of serine/threonine protein phosphatases 2C (PP2Cs), such as ABI1, ABI2, AtPP2CA, HAB1, and HAB2, was diminished in transgenic plants overexpressing AtMYB44. By contrast, the atmyb44 knockout mutant line exhibited enhanced salt-induced expression of PP2C-encoding genes and reduced drought/salt stress tolerance compared to wild-type plants. Therefore, enhanced abiotic stress tolerance of transgenic Arabidopsis overexpressing AtMYB44 was conferred by reduced expression of genes encoding PP2Cs, which have been described as negative regulators of ABA signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Estômatos de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética
13.
Plant Biotechnol J ; 5(5): 646-56, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17614953

RESUMO

C-repeat/dehydration-responsive element binding factors (CBF/DREBs) are a family of transcription factors that regulate freezing tolerance in Arabidopsis. As a step towards understanding the stress response of monocotyledonous plants, we isolated a barley gene HvCBF4 whose expression is induced by low-temperature stress. Transgenic over-expression of HvCBF4 in rice resulted in an increase in tolerance to drought, high-salinity and low-temperature stresses without stunting growth. Interestingly, under low-temperature conditions, the maximum photochemical efficiency of photosystem II in the dark-adapted state (F(v)/F(m), where F(v) is the variable fluorescence and F(m) is the maximum fluorescence) in HvCBF4 plants was higher by 20% and 10% than that in non-transgenic and CBF3/DREB1A plants, respectively. Using the 60K Rice Whole Genome microarray, 15 rice genes were identified that were activated by HvCBF4. When compared with 12 target rice genes of CBF3/DREB1A, five genes were common to both HvCBF4 and CBF3/DREB1A, and 10 and seven genes were specific to HvCBF4 and CBF3/DREB1A, respectively. Interestingly, HvCBF4 did not activate Dip1 and Lip5, two important target genes of CBF3/DREB1A, in transgenic rice under normal growth conditions, but their expression was enhanced by HvCBF4 under low-temperature conditions. Our results suggest that CBF/DREBs of barley act differently from those of Arabidopsis in transgenic rice.


Assuntos
Hordeum/genética , Oryza/genética , Proteínas de Plantas/genética , Transativadores/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Clorofila/metabolismo , Desastres , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/farmacologia , Temperatura , Transativadores/fisiologia
14.
Plant Mol Biol ; 64(1-2): 1-15, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17364223

RESUMO

We cloned a salicylic acid/benzoic acid carboxyl methyltransferase gene, OsBSMT1, from Oryza sativa. A recombinant OsBSMT1 protein obtained by expressing the gene in Escherichia coli exhibited carboxyl methyltransferase activity in reactions with salicylic acid (SA), benzoic acid (BA), and de-S-methyl benzo(1,2,3)thiadiazole-7-carbothioic acid (dSM-BTH), producing methyl salicylate (MeSA), methyl benzoate (MeBA), and methyl dSM-BTH (MeBTH), respectively. Compared to wild-type plants, transgenic Arabidopsis overexpressing OsBSMT1 accumulated considerably higher levels of MeSA and MeBA, some of which were vaporized into the environment. Upon infection with the bacterial pathogen Pseudomonas syringae or the fungal pathogen Golovinomyces orontii, transgenic plants failed to accumulate SA and its glucoside (SAG), becoming more susceptible to disease than wild-type plants. OsBSMT1-overexpressing Arabidopsis showed little induction of PR-1 when treated with SA or G. orontii. Notably, incubation with the transgenic plant was sufficient to trigger PR-1 induction in neighboring wild-type plants. Together, our results indicate that in the absence of SA, MeSA alone cannot induce a defense response, yet it serves as an airborne signal for plant-to-plant communication. We also found that jasmonic acid (JA) induced AtBSMT1, which may contribute to an antagonistic effect on SA signaling pathways by depleting the SA pool in plants.


Assuntos
Arabidopsis/genética , Metiltransferases/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Sequência de Aminoácidos , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Ascomicetos/fisiologia , Clonagem Molecular , Ciclopentanos/metabolismo , Imunidade Inata/genética , Metiltransferases/metabolismo , Metiltransferases/fisiologia , Dados de Sequência Molecular , Oryza/genética , Oxilipinas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/fisiologia , Proteínas Recombinantes/metabolismo , Salicilatos/metabolismo , Ácido Salicílico/metabolismo , Alinhamento de Sequência
15.
Plant Physiol ; 138(1): 341-51, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15834008

RESUMO

Rice (Oryza sativa), a monocotyledonous plant that does not cold acclimate, has evolved differently from Arabidopsis (Arabidopsis thaliana), which cold acclimates. To understand the stress response of rice in comparison with that of Arabidopsis, we developed transgenic rice plants that constitutively expressed CBF3/DREB1A (CBF3) and ABF3, Arabidopsis genes that function in abscisic acid-independent and abscisic acid-dependent stress-response pathways, respectively. CBF3 in transgenic rice elevated tolerance to drought and high salinity, and produced relatively low levels of tolerance to low-temperature exposure. These data were in direct contrast to CBF3 in Arabidopsis, which is known to function primarily to enhance freezing tolerance. ABF3 in transgenic rice increased tolerance to drought stress alone. By using the 60 K Rice Whole Genome Microarray and RNA gel-blot analyses, we identified 12 and 7 target genes that were activated in transgenic rice plants by CBF3 and ABF3, respectively, which appear to render the corresponding plants acclimated for stress conditions. The target genes together with 13 and 27 additional genes are induced further upon exposure to drought stress, consequently making the transgenic plants more tolerant to stress conditions. Interestingly, our transgenic plants exhibited neither growth inhibition nor visible phenotypic alterations despite constitutive expression of the CBF3 or ABF3, unlike the results previously obtained from Arabidopsis where transgenic plants were stunted.


Assuntos
Proteínas de Arabidopsis/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Desastres , Regulação da Expressão Gênica de Plantas , Homozigoto , Cinética , Oryza/genética , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Proteínas Recombinantes/metabolismo , Solo/análise
16.
J Virol ; 78(6): 3072-82, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14990726

RESUMO

Satellite RNAs usurp the replication machinery of their helper viruses, even though they bear little or no sequence similarity to the helper virus RNA. In Cereal yellow dwarf polerovirus serotype RPV (CYDV-RPV), the 322-nucleotide satellite RNA (satRPV RNA) accumulates to high levels in the presence of the CYDV-RPV helper virus. Rolling circle replication generates multimeric satRPV RNAs that self-cleave via a double-hammerhead ribozyme structure. Alternative folding inhibits formation of a hammerhead in monomeric satRPV RNA. Here we determine helper virus requirements and the effects of mutations and deletions in satRPV RNA on its replication in oat cells. Using in vivo selection of a satRPV RNA pool randomized at specific bases, we found that disruption of the base pairing necessary to form the non-self-cleaving conformation reduced satRPV RNA accumulation. Unlike other satellite RNAs, both the plus and minus strands proved to be equally infectious. Accordingly, very similar essential replication structures were identified in each strand. A different region is required only for encapsidation. The CYDV-RPV RNA-dependent RNA polymerase (open reading frames 1 and 2), when expressed from the nonhelper Barley yellow dwarf luteovirus, was capable of replicating satRPV RNA. Thus, the helper virus's polymerase is the sole determinant of the ability of a virus to replicate a rolling circle satellite RNA. We present a framework for functional domains in satRPV RNA with three types of function: (i) conformational control elements comprising an RNA switch, (ii) self-functional elements (hammerhead ribozymes), and (iii) cis-acting elements that interact with viral proteins.


Assuntos
Avena/virologia , Elementos Facilitadores Genéticos/genética , Luteovirus/metabolismo , RNA Satélite/metabolismo , RNA Viral/metabolismo , Sequência de Bases , Deleção de Genes , Vírus Auxiliares , Luteovirus/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Satélite/química , RNA Satélite/genética , Sorotipagem , Relação Estrutura-Atividade , Replicação Viral
17.
Plant J ; 33(3): 531-41, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12581311

RESUMO

Histone deacetylases (HDACs) modulate chromatin structure and transcription. HDACs have been studied as negative regulators in eukaryotic transcription. We isolated the rice OsHDAC1-3 genes for class I-type histone deacetylases, which are related to the RPD3 family. The OsHDAC1 gene encoded a protein of approximately 57 kDa that shared 73.5, 72.7, 79.9, and 57.1% amino acid sequence identity with the OsHDAC2, OsHDAC3, maize RPD3, and human HDAC1 proteins, respectively. Genomic structures and Southern blot analyses revealed that OsHDAC1-3 contained seven, six, and seven exons, respectively, and constituted a class I-type family in the rice genome. OsHDAC1 was expressed at similar levels in the leaves, roots, and callus cells, whereas OsHDAC2 and 3 were expressed in the roots and callus cells, but not in the leaves, exhibiting distinct tissue specificity. To explore the role of histone deacetylases in transgenic plants, we inserted the OsHDAC1 cDNA fragment into the expression vector Ai::OsHDAC1 under the control of the ABA-inducible promoter Ai, and transformed the construct into rice. Levels of mRNA, protein, and HDAC activity were significantly increased in Ai::OsHDAC1 callus cells. The amount of tetra-acetylated H4 in the transgenic cells was greatly reduced, and the reduction was abolished upon treatment with trichostatin A. These results demonstrate that OsHDAC1 overexpression in transgenic cells both yields enzymatically active HDAC complexes and induces changes in histone acetylation in vivo. The overexpression leads to a range of novel phenotypes, involving increased growth rate and altered plant architecture, suggesting that OsHDAC1 functions in the genome-wide programming of gene expression.


Assuntos
Histona Desacetilases/genética , Oryza/genética , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Técnicas de Cultura , DNA Complementar/química , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histonas/efeitos dos fármacos , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutação , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
18.
Plant Physiol ; 131(2): 516-24, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12586876

RESUMO

Trehalose plays an important role in stress tolerance in plants. Trehalose-producing, transgenic rice (Oryza sativa) plants were generated by the introduction of a gene encoding a bifunctional fusion (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase (TPP) of Escherichia coli, under the control of the maize (Zea mays) ubiquitin promoter (Ubi1). The high catalytic efficiency (Seo et al., 2000) of the fusion enzyme and the single-gene engineering strategy make this an attractive candidate for high-level production of trehalose; it has the added advantage of reducing the accumulation of potentially deleterious T-6-P. The trehalose levels in leaf and seed extracts from Ubi1::TPSP plants were increased up to 1.076 mg g fresh weight(-1). This level was 200-fold higher than that of transgenic tobacco (Nicotiana tabacum) plants transformed independently with either TPS or TPP expression cassettes. The carbohydrate profiles were significantly altered in the seeds, but not in the leaves, of Ubi1::TPSP plants. It has been reported that transgenic plants with E. coli TPS and/or TPP were severely stunted and root morphology was altered. Interestingly, our Ubi1::TPSP plants showed no growth inhibition or visible phenotypic alterations despite the high-level production of trehalose. Moreover, trehalose accumulation in Ubi1::TPSP plants resulted in increased tolerance to drought, salt, and cold, as shown by chlorophyll fluorescence and growth inhibition analyses. Thus, our results suggest that trehalose acts as a global protectant against abiotic stress, and that rice is more tolerant to trehalose synthesis than dicots.


Assuntos
Escherichia coli/genética , Glucosiltransferases/genética , Oryza/genética , Monoéster Fosfórico Hidrolases/genética , Trealose/biossíntese , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Clorofila/metabolismo , Temperatura Baixa , Desastres , Escherichia coli/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Monoéster Fosfórico Hidrolases/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Cloreto de Sódio/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/metabolismo , Trealase/metabolismo
19.
Mol Cells ; 14(2): 205-13, 2002 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-12442892

RESUMO

The complete genome sequence of the garlic latent virus (GLV) has been determined. The whole GLV genome consists of 8,353 nucleotides, excluding the 3'-end poly(A)+ tail, and contains six open-reading frames (ORFs). Putative proteins that were encoded by the reading frames contain the motifs that were conserved in carlavirus-specific RNA replicases, NTP-dependent DNA helicases, two viral membrane-bound proteins, a viral coat protein, and a zinc-finger. Overall, the GLV genome shows structural features that are common in carlaviruses. An in vitro translation analysis revealed that the zinc-finger protein is not produced as a transframe protein with the coat protein by ribosomal frameshifting. A Northern blot analysis showed that GLV-specific probes hybridized to garlic leaf RNA fragments of about 2.6 and 1.5 kb long, in addition to the 8.5 kb whole genome. The two subgenomic RNAs might be encapsidated into smaller viral particles. In garlic plants, 700 nm long flexuous rod-shaped virus particles were observed in the immunoelectron microscopy using polyclonal antibodies against the GLV coat proteins.


Assuntos
Carlavirus/genética , Alho/virologia , Genoma Viral , Sequência de Aminoácidos , Northern Blotting , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/genética , Carlavirus/química , Carlavirus/ultraestrutura , Clonagem Molecular , Microscopia Imunoeletrônica , Dados de Sequência Molecular , RNA/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas Virais/química , Proteínas Virais/genética
20.
Plant Physiol ; 129(4): 1473-81, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12177461

RESUMO

Expression patterns of a rice (Oryza sativa) cytochrome c gene OsCc1 and its promoter activity were characterized in transgenic rice plants. OsCc1 transcripts accumulate in most cell types, but to varying levels. Large amounts of OsCc1 transcripts are found in the roots, calli, and suspension cells, but relatively lower in mature leaves, demonstrating its higher levels of expression in non-photosynthetic tissues. Unlike the human cytochrome c gene, which is responsive to cAMP, OsCc1 expression is not enhanced in various rice tissues after dibutyryl cAMP treatments. OsCc1 promoter was linked to the sgfp gene and its activities in different tissues and cell types of transgenic rice plants were analyzed in comparison with the Act1 and RbcS promoters. OsCc1 promoter directs expression in virtually all organs of transgenic plants including roots, leaves, calli, embryos, and suspension cells, showing a particularly high activity in calli and roots. Activity of the OsCc1 promoter was 3-fold higher than Act1 in calli and roots and comparable with RbcS in leaves, representing a useful alternative to the maize (Zea mays) Ubi1 and the rice Act1 promoters for transgene expression in monocots.


Assuntos
Proteínas de Arabidopsis , Grupo dos Citocromos c/genética , Oryza/genética , Regiões Promotoras Genéticas/genética , Actinas/genética , Actinas/metabolismo , Mapeamento Cromossômico , Técnicas de Cultura , Grupo dos Citocromos c/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...