Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(1): 819-828, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153349

RESUMO

As semiconductor scaling continues to reach sub-nanometer levels, two-dimensional (2D) semiconductors are emerging as a promising candidate for the post-silicon material. Among these alternatives, Bi2O2Se has risen as an exceptionally promising 2D semiconductor thanks to its excellent electrical properties, attributed to its appropriate bandgap and small effective mass. However, unlike other 2D materials, growth of large-scale Bi2O2Se films with precise layer control is still challenging due to its large surface energy caused by relatively strong interlayer electrostatic interactions. Here, we present the successful growth of a wafer-scale (∼3 cm) Bi2O2Se film with precise thickness control down to the monolayer level on TiO2-terminated SrTiO3 using metal-organic chemical vapor deposition (MOCVD). Scanning transmission electron microscopy (STEM) analysis confirmed the formation of a [BiTiO4]1- interfacial structure, and density functional theory (DFT) calculations revealed that the formation of [BiTiO4]1- significantly reduced the interfacial energy between Bi2O2Se and SrTiO3, thereby promoting 2D growth. Additionally, spectral responsivity measurements of two-terminal devices confirmed a bandgap increase of up to 1.9 eV in monolayer Bi2O2Se, which is consistent with our DFT calculations. Finally, we demonstrated high-performance Bi2O2Se field-effect transistor (FET) arrays, exhibiting an excellent average electron mobility of 56.29 cm2/(V·s). This process is anticipated to enable wafer-scale applications of 2D Bi2O2Se and facilitate exploration of intriguing physical phenomena in confined 2D systems.

2.
ACS Nano ; 15(11): 18113-18124, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34734700

RESUMO

Charge doping to Mott insulators is critical to realize high-temperature superconductivity, quantum spin liquid state, and Majorana fermion, which would contribute to quantum computation. Mott insulators also have a great potential for optoelectronic applications; however, they showed insufficient photoresponse in previous reports. To enhance the photoresponse of Mott insulators, charge doping is a promising strategy since it leads to effective modification of electronic structure near the Fermi level. Intercalation, which is the ion insertion into the van der Waals gap of layered materials, is an effective charge-doping method without defect generation. Herein, we showed significant enhancement of optoelectronic properties of a layered Mott insulator, α-RuCl3, through electron doping by organic cation intercalation. The electron-doping results in substantial electronic structure change, leading to the bandgap shrinkage from 1.2 eV to 0.7 eV. Due to localized excessive electrons in RuCl3, distinct density of states is generated in the valence band, leading to the optical absorption change rather than metallic transition even in substantial doping concentration. The stable near-infrared photodetector using electronic modulated RuCl3 showed 50 times higher photoresponsivity and 3 times faster response time compared to those of pristine RuCl3, which contributes to overcoming the disadvantage of a Mott insulator as a promising optoelectronic device and expanding the material libraries.

3.
ACS Nano ; 15(5): 8715-8723, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33973765

RESUMO

Ternary metal-oxy-chalcogenides are emerging as next-generation layered semiconductors beyond binary metal-chalcogenides (i.e., MoS2). Among ternary metal-oxy-chalcogenides, especially Bi2O2Se has been demonstrated in field-effect transistors and photodetectors, exhibiting ultrahigh performance with robust air stability. The growth method for Bi2O2Se that has been reported so far is a powder sublimation based chemical vapor deposition. The first step for pursuing the practical application of Bi2O2Se as a semiconductor material is developing a gas-phase growth process. Here, we report a cracking metal-organic chemical vapor deposition (c-MOCVD) for the gas-phase growth of Bi2O2Se. The resulting Bi2O2Se films at very low growth temperature (∼300 °C) show single-crystalline quality. By taking advantage of the gas-phase growth, the precise phase control was demonstrated by modulating the partial pressure of each precursor. In addition, c-MOCVD-grown Bi2O2Se exhibits outstanding electrical and optoelectronic performance at room temperature without passivation, including maximum electron mobility of 127 cm2/(V·s) and photoresponsivity of 45134 A/W.

4.
Nano Lett ; 21(9): 3997-4005, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33881885

RESUMO

Electric field driven reversible phase transitions in two-dimensional (2D) materials are appealing for their potential in switching applications. Here, we introduce potassium intercalated MnO2 as an exemplary case. We demonstrate the synthesis of large-area single-crystal layered MnO2 via chemical vapor deposition as thin as 5 nm. These crystals are spontaneously intercalated by potassium ions during the synthesis. We showed that the charge transport in 2D K-MnO2 is dominated by motion of hydrated potassium ions in the interlayer space. Under a few volts bias, separation of potassium and the structural water leads to formation of different phases at the opposite terminals, and at larger biases K-MnO2 crystals exhibit reversible layered-to-spinel phase transition. These phase transitions are accompanied by electrical and optical changes in the material. We used the electric field driven ionic motion in K-MnO2 based devices to demonstrate the memristive capabilities of two terminal devices.

5.
ACS Nano ; 14(12): 16266-16300, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33301290

RESUMO

Layered materials that do not form a covalent bond in a vertical direction can be prepared in a few atoms to one atom thickness without dangling bonds. This distinctive characteristic of limiting thickness around the sub-nanometer level allowed scientists to explore various physical phenomena in the quantum realm. In addition to the contribution to fundamental science, various applications were proposed. Representatively, they were suggested as a promising material for future electronics. This is because (i) the dangling-bond-free nature inhibits surface scattering, thus carrier mobility can be maintained at sub-nanometer range; (ii) the ultrathin nature allows the short-channel effect to be overcome. In order to establish fundamental discoveries and utilize them in practical applications, appropriate preparation methods are required. On the other hand, adjusting properties to fit the desired application properly is another critical issue. Hence, in this review, we first describe the preparation method of layered materials. Proper growth techniques for target applications and the growth of emerging materials at the beginning stage will be extensively discussed. In addition, we suggest interlayer engineering via intercalation as a method for the development of artificial crystal. Since infinite combinations of the host-intercalant combination are possible, it is expected to expand the material system from the current compound system. Finally, inevitable factors that layered materials must face to be used as electronic applications will be introduced with possible solutions. Emerging electronic devices realized by layered materials are also discussed.

6.
Sci Rep ; 10(1): 4279, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152369

RESUMO

Continuous recording of intracellular activities in single cells is required for deciphering rare, dynamic and heterogeneous cell responses, which are missed by population or brief single-cell recording. Even if the field of intracellular recording is constantly proceeding, several technical challenges are still remained to conquer this important approach. Here, we demonstrate long-term intracellular recording by combining a vertical nanowire multi electrode array (VNMEA) with optogenetic stimulation to minimally disrupt cell survival and functions during intracellular access and measurement. We synthesized small-diameter and high-aspect-ratio silicon nanowires to spontaneously penetrate into single cells, and used light to modulate the cell's responsiveness. The light-induced intra- and extracellular activities of individual optogenetically-modified cells were measured simultaneously, and each cell showed distinctly different measurement characteristics according to the cell-electrode configuration. Intracellular recordings were achieved continuously and reliably without signal interference and attenuation over 24 hours. The integration of two controllable techniques, vertically grown nanowire electrodes and optogenetics, expands the strategies for discovering the mechanisms for crucial physiological and dynamic processes in various types of cells.


Assuntos
Potenciais de Ação , Fenômenos Fisiológicos Celulares , Eletrodos , Nanofios/química , Optogenética , Silício/química , Células HEK293 , Humanos
7.
IEEE Trans Biomed Circuits Syst ; 13(6): 1288-1299, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31751251

RESUMO

This paper presents the first CMOS Vascular Endothelial Growth Factor (VEGF) sensor for cancer diagnosis directly from human blood. The sensor incorporates a peptide aptamer-based microneedle that allows the detection of electrochemical reactions with VEGF. This results in a capacitance change between the microneedles and then reads out by a two-step capacitance-to-digital converter (CDC). The proposed two-step CDC consists of a coarse 5b slope ADC and a fine 14b continuous-time delta-sigma modulator (CTDSM). During slow peptide-binding, the slope ADC performs a coarse conversion and the results are used to adjust the current level of the stimulator. After settling of the peptide-binding, based on an adjusted stimulation current, the CTDSM measures the small capacitance changes of the sensor. The prototype chip is fabricated in a 65-nm CMOS process, occupying a 0.87 mm 2 active area. The power consumption is 270 muW. Thanks to the two-step approach, this work achieves a wide dynamic range of 18.3b, covering a large sensor-to-sensor variation. It also achieves a peak resolution of 13.7b, while maintaining errors in 1 to 100 nF baseline capacitance. The overall sensor system successfully detects the VEGF in both phosphate-buffered saline (PBS) and human blood serum. Without the use of precision instruments, this work achieves a resolution of 15 fM [Formula: see text] in range of 0.1 to 1000 pM and denotes the clear VEGF selectivity at 40× in PBS and 5× in the blood serum compared to other proteins (IgG, Con A, and cholera toxin).


Assuntos
Técnicas Biossensoriais/instrumentação , Neoplasias/diagnóstico , Fator A de Crescimento do Endotélio Vascular/análise , Aptâmeros de Peptídeos/metabolismo , Capacitância Elétrica , Desenho de Equipamento , Humanos , Semicondutores , Fator A de Crescimento do Endotélio Vascular/sangue
8.
Nano Lett ; 19(4): 2291-2298, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30860390

RESUMO

The real-time selective detection of disease-related markers in blood using biosensors has great potential for use in the early diagnosis of diseases and infections. However, this potential has not been realized thus far due to difficulties in interfacing the sensor with blood and achieving transparent circuits that are essential for detecting of target markers (e.g., protein, ions, etc.) in a complex blood environment. Herein, we demonstrate the real-time detection of a specific protein and ion in blood without a skin incision. Complementary metal-oxide-semiconductor technology was used to fabricate silicon micropillar array (SiMPA) electrodes with a height greater than 600 µm, and the surface of the SiMPA electrodes was functionalized with a self-assembling artificial peptide (SAP) as a receptor for target markers in blood, i.e., cholera toxin (CTX) and mercury(II) ions (Hg). The detection of CTX was investigated in both in vitro (phosphate-buffered saline and human blood serum, HBO model) and in vivo (mouse model) modes via impedance analysis. In the in vivo mode, the SiMPA pierces the skin, comes into contact with the blood system, and creates comprehensive circuits that include all the elements such as electrodes, blood, and receptors. The SiMPA achieves electrically transparent circuits and, thus, can selectively detect CTX in the blood in real time with a high sensitivity of 50 pM and 5 nM in the in vitro and in vivo modes, respectively. Mercury(II) ions can also be detected in both the in vitro and the in vivo modes by changing the SAP. The results illustrate that a robust sensor that can detect a variety of molecular species in the blood system in real time that will be helpful for the early diagnosis of disease and infections.


Assuntos
Biomarcadores/sangue , Técnicas Biossensoriais , Toxina da Cólera/isolamento & purificação , Mercúrio/isolamento & purificação , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/isolamento & purificação , Toxina da Cólera/sangue , Humanos , Limite de Detecção , Mercúrio/sangue , Camundongos , Semicondutores , Silício/química
9.
Adv Mater ; 28(34): 7430-5, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27309997

RESUMO

Room-temperature multiferroism in LuFeO3 (LFO) films is demonstrated by exploiting the orthorhombic-hexagonal (o-h) morphotrophic phase coexistence. The LFO film further reveals a magnetoelectric coupling effect that is not shown in single-phase (h- or o-) LFO. The observed multiferroism is attributed to the combination of sufficient polarization from h-LFO and net magnetization from o-LFO.

10.
Sci Rep ; 6: 26644, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27226162

RESUMO

Nanometer-scale ferroelectric dots and tubes have received a great deal of attention owing to their potential applications to nonvolatile memories and multi-functional devices. As for the size effect of 180° stripe domains in ferroelectric thin films, there have been numerous reports on the thickness-dependent domain periodicity. All these studies have revealed that the domain periodicity (w) of 180° stripe domains scales with the film thickness (d) according to the classical Landau-Lifshitz-Kittel (LLK) scaling law (w ∝ d(1/2)) down to the thickness of ~2 nm. In the case of PbTiO3 nanodots, however, we obtained a striking correlation that for the thickness less than a certain critical value, dc (~35 nm), the domain width even increases with decreasing thickness of the nanodot, which surprisingly indicates a negative value in the LLK scaling-law exponent. On the basis of theoretical considerations of dc, we attributed this anomalous domain periodicity to the finite lateral-size effect of a ferroelectric nanodot with an additional effect possibly coming from the existence of a thin non-ferroelectric surface layer.

11.
Small ; 10(18): 3678-84, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24832671

RESUMO

Lattice distortion induced by residual stresses can alter electronic and mechanical properties of materials significantly. Herein, a novel way of the bandgap tuning in a quantum dot (QD) by lattice distortion is presented using 4-nm-sized CdS QDs grown on a TiO2 particle as an application example. The bandgap tuning (from 2.74 eV to 2.49 eV) of a CdS QD is achieved by suitably adjusting the degree of lattice distortion in a QD via the tensile residual stresses which arise from the difference in thermal expansion coefficients between CdS and TiO2. The idea of bandgap tuning is then applied to QD-sensitized solar cells, achieving ≈60% increase in the power conversion efficiency by controlling the degree of thermal residual stress. Since the present methodology is not limited to a specific QD system, it will potentially pave a way to unexplored quantum effects in various QD-based applications.

12.
ACS Nano ; 7(6): 5522-9, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23718314

RESUMO

Multiferroics that show simultaneous ferroic responses have received a great deal of attention by virtue of their potential for enabling new device paradigms. Here, we demonstrate a high-density four-states multiferroic memory using vertically aligned Mn-doped BaTiO3 nanorods prepared by applying the dip-pen nanolithography technique. In the present nanorods array, the polarization (P) switching by an external electric field does not influence the magnetization (M) of the nanorod owing to a negligible degree of the P-M cross-coupling. Similarly, the magnetic-field-induced M switching is unaffected by the ferroelectric polarization. On the basis of these, we are able to implement a four-states nonvolatile multiferroic memory, namely, (+P,+M), (+P,-M) ,(-P,+M), and (-P,-M) with the reliability in the P and M switching. Thus, the present work makes an important step toward the practical realization of multistate ferroic memories.

13.
J Am Chem Soc ; 134(3): 1450-3, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22235836

RESUMO

Multiferroics have received a great deal of attention because of their fascinating physics of order-parameter cross-couplings and their potential for enabling new device paradigms. Considering the rareness of multiferroic materials, we have been exploring the possibility of artificially imposing ferroelectricity by structurally tailoring antiferromagnets in thin-film forms. YbFeO(3) (YbFO hereafter), a family of centrosymmetric rare-earth orthoferrites, is known to be nonferroelectric (space group Pnma). Here we report that a YbFO thin-film heterostructure fabricated by adopting a hexagonal template surprisingly exhibits nonferroelastic ferroelectricity with the Curie temperature of 470 K. The observed ferroelectricity is further characterized by an extraordinary two-step polarization decay, accompanied by a pronounced magnetocapacitance effect near the lower decay temperature, ~225 K. According to first-principles calculations, the hexagonal P6(3)/mmc-P6(3)mc-P6(3)cm consecutive transitions are primarily responsible for the observed two-step polarization decay, and the ferroelectricity originates from the c-axis-oriented asymmetric Yb 5d(z(2))-O 2p(z) orbital hybridization. Temperature-dependent magnetization curves further reveal an interesting phenomenon of spontaneous magnetization reversal at 83 K, which is attributed to the competition between two distinct magnetocrystalline anisotropy terms, Fe 3d and Yb 4f moments.

14.
Int J Toxicol ; 30(2): 162-73, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21300768

RESUMO

The discussion on whether the Sprague Dawley (SD), the Fischer F344, or the Hannover Wistar rat is the most appropriate model for toxicity studies in rodents is ongoing. A substantial quantity of data on these strains concerning their source, diet, and housing conditions have been published. Generally, before starting a toxicology program in rodents, it should be taken into account that oncogenicity studies will be required for the majority of compounds successfully completing development. Survival, body weight development, incidence, type, time of onset of age-dependent lesions and neoplasms, as well as some special considerations of the rat model selected may be decisive. Therefore, an understanding of the historical background data is essential. These aspects demonstrate why the use of a specific rat model should be carefully considered at the beginning of the toxicology program.


Assuntos
Modelos Animais , Neoplasias Experimentais/patologia , Testes de Toxicidade/métodos , Animais , Peso Corporal , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Feminino , Masculino , Neoplasias Experimentais/induzido quimicamente , Tamanho do Órgão , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...