Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 168(6): 1080-1096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317263

RESUMO

Sevoflurane, the predominant pediatric anesthetic, has been linked to neurotoxicity in young mice, although the underlying mechanisms remain unclear. This study focuses on investigating the impact of neonatal sevoflurane exposure on cell-type-specific alterations in the prefrontal cortex (PFC) of young mice. Neonatal mice were subjected to either control treatment (60% oxygen balanced with nitrogen) or sevoflurane anesthesia (3% sevoflurane in 60% oxygen balanced with nitrogen) for 2 hours on postnatal days (PNDs) 6, 8, and 10. Behavioral tests and single-nucleus RNA sequencing (snRNA-seq) of the PFC were conducted from PNDs 31 to 37. Mechanistic exploration included clustering analysis, identification of differentially expressed genes (DEGs), enrichment analyses, single-cell trajectory analysis, and genome-wide association studies (GWAS). Sevoflurane anesthesia resulted in sociability and cognition impairments in mice. Novel specific marker genes identified 8 distinct cell types in the PFC. Most DEGs between the control and sevoflurane groups were unique to specific cell types. Re-defining 15 glutamatergic neuron subclusters based on layer identity revealed their altered expression profiles. Notably, sevoflurane disrupted the trajectory from oligodendrocyte precursor cells (OPCs) to oligodendrocytes (OLs). Validation of disease-relevant candidate genes across the main cell types demonstrated their association with social dysfunction and working memory impairment. Behavioral results and snRNA-seq collectively elucidated the cellular atlas in the PFC of young male mice, providing a foundation for further mechanistic studies on developmental neurotoxicity induced by anesthesia.


Assuntos
Anestésicos Inalatórios , Córtex Pré-Frontal , Sevoflurano , Animais , Sevoflurano/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Camundongos , Anestésicos Inalatórios/toxicidade , Masculino , Animais Recém-Nascidos , Feminino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estudo de Associação Genômica Ampla
2.
Anesthesiology ; 138(5): 477-495, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752736

RESUMO

BACKGROUND: Multiple neonatal exposures to sevoflurane induce neurocognitive dysfunctions in rodents. The lack of cell type-specific information after sevoflurane exposure limits the mechanistic understanding of these effects. In this study, the authors tested the hypothesis that sevoflurane exposures alter the atlas of hippocampal cell clusters and have neuronal and nonneuronal cell type-specific effects in mice of both sexes. METHODS: Neonatal mice were exposed to 3% sevoflurane for 2 h at postnatal days 6, 8, and 10 and analyzed for the exposure effects at postnatal day 37. Single-nucleus RNA sequencing was performed in the hippocampus followed by in situ hybridization to validate the results of RNA sequencing. The Morris Water Maze test was performed to test neurocognitive function. RESULTS: The authors found sex-specific distribution of hippocampal cell types in control mice alongside cell type- and sex-specific effects of sevoflurane exposure on distinct hippocampal cell populations. There were important changes in male but not in female mice after sevoflurane exposure regarding the proportions of cornu ammonis 1 neurons (control vs. sevoflurane, males: 79.9% vs. 32.3%; females: 27.3% vs. 24.3%), dentate gyrus (males: 4.2% vs. 23.4%; females: 36.2% vs. 35.8%), and oligodendrocytes (males: 0.6% vs. 6.9%; females: 5.9% vs. 7.8%). In male but not in female mice, sevoflurane altered the number of significantly enriched ligand-receptor pairs in the cornu ammonis 1, cornu ammonis 3, and dente gyrus trisynaptic circuit (control vs. sevoflurane, cornu ammonis 1-cornu ammonis 3: 18 vs. 42 in males and 15 vs. 21 in females; cornu ammonis 1-dentate gyrus: 21 vs. 35 in males and 12 vs. 20 in females; cornu ammonis 3-dentate gyrus: 25 vs. 45 in males and 17 vs. 20 in females), interfered with dentate gyrus granule cell neurogenesis, hampered microglia differentiation, and decreased cornu ammonis 1 pyramidal cell diversity. Oligodendrocyte differentiation was specifically altered in females with increased expressions of Mbp and Mag. In situ hybridization validated the increased expression of common differentially expressed genes. CONCLUSIONS: This single-nucleus RNA sequencing study reveals the hippocampal atlas of mice, providing a comprehensive resource for the neuronal and nonneuronal cell type- and sex-specific effects of sevoflurane during development.


Assuntos
Giro Denteado , Hipocampo , Masculino , Feminino , Animais , Camundongos , Sevoflurano/farmacologia , Giro Denteado/metabolismo , Neurônios , Células Piramidais
3.
J Cell Physiol ; 236(2): 1309-1320, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32657442

RESUMO

Myocardial ischemia/reperfusion (I/R) injury leads to high mortality and morbidity due to the incomplete understanding of the underlying mechanism and the consequent lack of effective therapy. The present study revealed and validated key candidate genes in relation to inflammation and apoptosis pathways underlying myocardial I/R injury. Cathepsin S was identified as the top hub protein based on the protein-protein interaction analysis, and, thus, its role during myocardial I/R injury was further investigated. Myocardial I/R in mice resulted in significantly increased levels of myocardial injury biomarkers (cardiac troponin I, lactic dehydrogenase, and creatinine kinase-MB) and inflammatory cytokines (interleukin-1ß [IL-1ß], IL-6, and tumor necrosis factor-α), elevated apoptosis rate, and upregulated protein expression of cleaved caspase-8, cleaved caspase-3, and cleaved poly ADP-ribose polymerase. These abovementioned changes were blocked by two different selective cathepsin S inhibitors, LY3000328 or MIV-247. Moreover, Kaplan-Meier survival plot showed that cathepsin S inhibition improved 21-day survival rate following myocardial I/R injury. This study demonstrated that the inhibition of cathepsin S alleviated myocardial I/R-induced injury by suppressing inflammation and apoptosis, which may be used in clinical applications of cardioprotection.


Assuntos
Benzopiranos/farmacologia , Carbamatos/farmacologia , Catepsinas/genética , Infarto do Miocárdio/tratamento farmacológico , Mapas de Interação de Proteínas/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Catepsinas/antagonistas & inibidores , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
4.
Oxid Med Cell Longev ; 2020: 3908641, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308802

RESUMO

BACKGROUND: Heat shock protein 70 (Hsp70) has been shown to exert cardioprotection. Intracellular calcium ([Ca2+]i) overload induced by p38 mitogen-activated protein kinase (p38 MAPK) activation contributes to cardiac ischemia/reperfusion (I/R) injury. However, whether Hsp70 interacts with p38 MAPK signaling is unclear. Therefore, this study investigated the regulation of p38 MAPK by Hsp70 in I/R-induced cardiac injury. METHODS: Neonatal rat cardiomyocytes were subjected to oxygen-glucose deprivation for 6 h followed by 2 h reoxygenation (OGD/R), and rats underwent left anterior artery ligation for 30 min followed by 30 min of reperfusion. The p38 MAPK inhibitor (SB203580), Hsp70 inhibitor (Quercetin), and Hsp70 short hairpin RNA (shRNA) were used prior to OGD/R or I/R. Cell viability, lactate dehydrogenase (LDH) release, serum cardiac troponin I (cTnI), [Ca2+]i levels, cell apoptosis, myocardial infarct size, mRNA level of IL-1ß and IL-6, and protein expression of Hsp70, phosphorylated p38 MAPK (p-p38 MAPK), sarcoplasmic/endoplasmic reticulum Ca2+-ATPase2 (SERCA2), phosphorylated signal transducer and activator of transcription3 (p-STAT3), and cleaved caspase3 were assessed. RESULTS: Pretreatment with a p38 MAPK inhibitor, SB203580, significantly attenuated OGD/R-induced cell injury or I/R-induced myocardial injury, as evidenced by improved cell viability and lower LDH release, resulted in lower serum cTnI and myocardial infarct size, alleviation of [Ca2+]i overload and cell apoptosis, inhibition of IL-1ß and IL-6, and modulation of protein expressions of p-p38 MAPK, SERCA2, p-STAT3, and cleaved-caspase3. Knockdown of Hsp70 by shRNA exacerbated OGD/R-induced cell injury, which was effectively abolished by SB203580. Moreover, inhibition of Hsp70 by quercetin enhanced I/R-induced myocardial injury, while SB203580 pretreatment reversed the harmful effects caused by quercetin. CONCLUSIONS: Inhibition of Hsp70 aggravates [Ca2+]i overload, inflammation, and apoptosis through regulating p38 MAPK signaling during cardiac I/R injury, which may help provide novel insight into cardioprotective strategies.


Assuntos
Proteínas de Choque Térmico HSP70/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Proteínas de Choque Térmico HSP70/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
5.
Aging (Albany NY) ; 11(19): 8386-8417, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582589

RESUMO

Children with repeated inhalational anesthesia may develop cognitive disorders. This study aimed to investigate the transcriptome-wide response of hippocampus in young mice that had been exposed to multiple sevoflurane in the neonatal period. Mice received 3% sevoflurane for 2 h on postnatal day (PND) 6, 8, and 10, followed by arterial blood gas test on PND 10, behavioral experiments on PND 31-36, and RNA sequencing (RNA-seq) of hippocampus on PND 37. Functional annotation and protein-protein interaction analyses of differentially expressed genes (DEGs) and quantitative reverse transcription polymerase chain reaction (qPCR) were performed. Neonatal sevoflurane exposures induced cognitive and social behavior disorders in young mice. RNA-seq identified a total of 314 DEGs. Several enriched biological processes (ion channels, brain development, learning, and memory) and signaling pathways (oxytocin signaling pathway and glutamatergic, cholinergic, and GABAergic synapses) were highlighted. As hub-proteins, Pten was involved in nervous system development, synapse assembly, learning, memory, and behaviors, Nos3 and Pik3cd in oxytocin signaling pathway, and Cdk16 in exocytosis and phosphorylation. Some top DEGs were validated by qPCR. This study revealed a transcriptome-wide profile in mice hippocampus after multiple neonatal exposures to sevoflurane, promoting better understanding of underlying mechanisms and investigation of preventive strategies.


Assuntos
Transtornos Cognitivos , Hipocampo , Sevoflurano , Transdução de Sinais/efeitos dos fármacos , Anestésicos Inalatórios/administração & dosagem , Anestésicos Inalatórios/efeitos adversos , Animais , Comportamento Animal/fisiologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Sevoflurano/administração & dosagem , Sevoflurano/efeitos adversos , Comportamento Social , Transcriptoma/efeitos dos fármacos
6.
Drug Des Devel Ther ; 13: 3137-3149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564830

RESUMO

PURPOSE: Intracellular calcium ([Ca2+]i) overload is a major cause of cell injury during myocardial ischemia/reperfusion (I/R). Dexmedetomidine (DEX) has been shown to exert anti-inflammatory and organ protective effects. This study aimed to investigate whether pretreatment with DEX could protect H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation (OGD/R) injury through regulating the Ca2+ signaling. METHODS: H9c2 cardiomyocytes were subjected to OGD for 12 h, followed by 3 h of reoxygenation. DEX was administered 1 h prior to OGD/R. Cell viability, lactate dehydrogenase (LDH) release, level of [Ca2+]i, cell apoptosis, and the expression of 12.6-kd FK506-binding protein/ryanodine receptor 2 (FKBP12.6/RyR2) and caspase-3 were assessed. RESULTS: Cells exposed to OGD/R had decreased cell viability, increased LDH release, elevated [Ca2+]i level and apoptosis rate, down-regulated expression of FKBP12.6, and up-regulated expression of phosphorylated-Ser2814-RyR2 and cleaved caspase-3. Pretreatment with DEX significantly blocked the above-mentioned changes, alleviating the OGD/R-induced injury in H9c2 cells. Moreover, knockdown of FKBP12.6 by small interfering RNA abolished the protective effects of DEX. CONCLUSION: This study indicates that DEX pretreatment protects the cardiomyocytes against OGD/R-induced injury by inhibiting [Ca2+]i overload and cell apoptosis via regulating the FKBP12.6/RyR2 signaling. DEX may be used for preventing cardiac I/R injury in the clinical settings.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Dexmedetomidina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Cálcio/administração & dosagem , Cálcio/análise , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Glucose/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...