Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 34: 80-97, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38143565

RESUMO

Critical limb ischemia (CLI) is a devastating disease characterized by the progressive blockage of blood vessels. Although the paracrine effect of growth factors in stem cell therapy made it a promising angiogenic therapy for CLI, poor cell survival in the harsh ischemic microenvironment limited its efficacy. Thus, an imperative need exists for a stem-cell delivery method that enhances cell survival. Here, a collagen microgel (CMG) cell-delivery scaffold (40 × 20 µm) was fabricated via micro-fragmentation from collagen-hyaluronic acid polyionic complex to improve transplantation efficiency. Culturing human adipose-derived stem cells (hASCs) with CMG enabled integrin receptors to interact with CMG to form injectable 3-dimensional constructs (CMG-hASCs) with a microporous microarchitecture and enhanced mass transfer. CMG-hASCs exhibited higher cell survival (p < 0.0001) and angiogenic potential in tube formation and aortic ring angiogenesis assays than cell aggregates. Injection of CMG-hASCs intramuscularly into CLI mice increased blood perfusion and limb salvage ratios by 40 % and 60 %, respectively, compared to cell aggregate-treated mice. Further immunofluorescent analysis revealed that transplanted CMG-hASCs have greater muscle regenerative and angiogenic potential, with enhanced cell survival than cell aggregates (p < 0.05). Collectively, we propose CMG as a cell-assembling platform and CMG-hASCs as promising therapeutics to treat CLI.

2.
Adv Healthc Mater ; 12(4): e2202401, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36453668

RESUMO

Numerous growth factors are involved in the natural bone healing process, which is precisely controlled in a time- and concentration-dependent manner. Mimicking the secretion pattern of growth factors could be an effective means to maximize the bone regeneration effect. However, achieving the sequential delivery of various growth factors without the use of multiple materials or complex scaffold designs is challenging. Herein, an injectable poly(organophosphazene) hydrogel scaffold (IPS) encapsulating bone morphogenetic protein (BMP)-2 and TGFß-1 (IPS_BT) is studied to mimic the sequential secretion of growth factors involved in natural bone healing. The IPS_BT system is designed to release TGFß-1 slowly while retaining BMP-2 for a longer period of time. When IPS_BT is injected in vivo, the hydrogel is replaced by bone tissue. In addition, angiogenic (CD31 and alpha-smooth muscle actin (α-SMA)) and stemness (Nanog and SOX2) markers are highly upregulated in the early stages of bone regeneration. The IPS system developed here has promising applications in tissue engineering because 1) various amounts of the growth factors can be loaded in one step, 2) the release pattern of each growth factor can be controlled via differences in their molecular interactions, and 3) the injected IPS can be degraded and replaced with regenerated bone tissue.


Assuntos
Regeneração Óssea , Hidrogéis , Alicerces Teciduais , Peptídeos e Proteínas de Sinalização Intercelular , Fator de Crescimento Transformador beta , Proteína Morfogenética Óssea 2
3.
Small ; 19(9): e2203464, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36526612

RESUMO

Three-dimensional (3D) bioprinting, which is being increasingly used in tissue engineering, requires bioinks with tunable mechanical properties, biological activities, and mechanical strength for in vivo implantation. Herein, a growth-factor-holding poly(organophosphazene)-based thermo-responsive nanocomposite (TNC) bioink system is developed. The mechanical properties of the TNC bioink are easily controlled within a moderate temperature range (5-37 °C). During printing, the mechanical properties of the TNC bioink, which determine the 3D printing resolution, can be tuned by varying the temperature (15-30 °C). After printing, TNC bioink scaffolds exhibit maximum stiffness at 37 °C. Additionally, because of its shear-thinning and self-healing properties, TNC bioinks can be extruded smoothly, demonstrating good printing outcomes. TNC bioink loaded with bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta1 (TGF-ß1), key growth factors for osteogenesis, is used to print a scaffold that can stimulate biological activity. A biological scaffold printed using TNC bioink loaded with both growth factors and implanted on a rat calvarial defect model reveals significantly improved bone regenerative effects. The TNC bioink system is a promising next-generation bioink platform because its mechanical properties can be tuned easily for high-resolution 3D bioprinting with long-term stability and its growth-factor holding capability has strong clinical applicability.


Assuntos
Bioimpressão , Nanocompostos , Animais , Ratos , Alicerces Teciduais , Engenharia Tecidual/métodos , Bioimpressão/métodos , Impressão Tridimensional , Regeneração Óssea
4.
Biomaterials ; 284: 121526, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35461098

RESUMO

Traumatic damage to the spinal cord does not spontaneously heal, often leading to permanent tissue defects. We have shown that injection of imidazole-poly(organophosphazene) hydrogel (I-5) bridges cystic cavities with the newly assembled fibronectin-rich extracellular matrix (ECM). The hydrogel-created ECM contains chondroitin sulfate proteoglycans (CSPGs), collagenous fibrils together with perivascular fibroblasts, and various fibrotic proteins, all of which could hinder axonal growth in the matrix. In an in vitro fibrotic scar model, fibroblasts exhibited enhanced sensitivity to TGF-ß1 when grown on CSPGs. To alleviate the fibrotic microenvironment, the I-5 hydrogel was equipped with an additional function by making a complex with ARSB, a human enzyme degrading CSPGs, via hydrophobic interaction. Delivery of the I-5/ARSB complex significantly diminished the fibrotic ECM components. The complex promoted serotonergic axonal growth into the hydrogel-induced matrix and enhanced serotonergic innervation of the lumbar motor neurons. Regeneration of the propriospinal axons deep into the matrix and to the lumbar spinal cord was robustly increased accompanied by improved locomotor recovery. Therefore, our dual-functional system upgraded the functionality of the hydrogel for spinal cord regeneration by creating ECM to bridge tissue defects and concurrently facilitating axonal connections through the newly assembled ECM.


Assuntos
N-Acetilgalactosamina-4-Sulfatase , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Axônios/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Preparações de Ação Retardada/metabolismo , Humanos , Hidrogéis/química , N-Acetilgalactosamina-4-Sulfatase/metabolismo , N-Acetilgalactosamina-4-Sulfatase/uso terapêutico , Regeneração Nervosa/fisiologia , Ratos , Ratos Sprague-Dawley , Medula Espinal
5.
Acta Biomater ; 144: 183-194, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331938

RESUMO

The treatment of chronic Achilles tendonitis (AT) often requires prolonged therapy and invasive therapeutic methods such as surgery or therapeutic endoscopy. To prevent the progression of chronic AT, excessive inflammation must be alleviated at an early stage. Corticosteroids or nonsteroidal anti-inflammatory drugs are generally prescribed to control inflammation; however, the high doses and long therapeutic periods required may lead to serious side effects. Herein, a local injectable poly(organophosphazene) (PPZ) - celecoxib (CXB) nanoparticle (PCNP) hydrogel system with long-term anti-inflammatory effects was developed for the treatment of tendonitis. The amphiphilic structure and thermosensitive mechanical properties of PPZ means that the hydrophobic CXB can be easily incorporated into the hydrophobic core to form PCNP at 4 °C. Following the injection of PCNP into the AT, PCNP hydrogel formed at body temperature and induced long-term local anti-inflammatory effects via sustained release of the PCNP. The therapeutic effects of the injectable PCNP system can alleviate excessive inflammation during the early stages of tissue damage and boost tissue regeneration. This study suggests that PCNP has significant potential as a long-term anti-inflammatory agent through sustained nonsteroidal anti-inflammatory drugs (NSAIDs) delivery and tissue regeneration boosting. STATEMENT OF SIGNIFICANCE: In the treatment of Achilles tendinitis, a long-term anti-inflammatory effect is needed to alleviate excessive inflammation and induce regeneration of the damaged Achilles tendon. Injectable poly(organophosphazene)(PPZ)-celecoxib(CXB) nanoparticles (PCNP) generated a long-term, localized-anti-inflammatory effect in the injected region, which successfully induced the expression of anti-inflammatory cytokines and suppressed pro-inflammatory cytokines, while the PCNPs degraded completely. Accordingly, regeneration of the damaged Achilles tendon was achieved through the long-term anti-inflammatory effect induced by a single PCNP injection. The PCNP system therefore has great potential in long-term NSAIDs delivery for various tissue engineering applications.


Assuntos
Tendão do Calcâneo , Nanopartículas , Tendinopatia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Citocinas/farmacologia , Humanos , Hidrogéis/química , Inflamação/tratamento farmacológico , Nanopartículas/química , Nanopartículas/uso terapêutico , Tendinopatia/tratamento farmacológico
6.
Bioact Mater ; 7: 14-25, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34466714

RESUMO

Treatment of osteoarthritis (OA) by administration of corticosteroids is a commonly used method in clinics using anti-inflammatory medicine. Oral administration or intra-articular injection of corticosteroids can reduce the pain and progress of cartilage degeneration, but they are usually insufficient to show local and long-term anti-inflammatory effects because of their fast clearance in the body. In this study, we suggest an injectable anti-OA drug depot system for sustained drug release that provides long-term effective therapeutic advantages. Amphiphilic poly(organophosphazene), which has temperature-dependent nanoparticle forming and sol-gel transition behaviors when dissolved in aqueous solution, was synthesized for triamcinolone acetonide (TCA) delivery. Because hydrophobic parts of the polymer can interact with hydrophobic parts of the TCA, the TCA was encapsulated into the self-assembled polymeric nanoparticles. The TCA-encapsulated polymeric nanoparticles (TePNs) were well dispersed in an aqueous solution below room temperature so that they can be easily injected as a sol state into an intra-articular region. However, the TePNs solution transforms immediately to a viscose 3D hydrogel like a synovial fluid in the intra-articular region via the conducted body temperature. An in vitro TCA release study showed sustained TCA release for six weeks. One-time injection of the TePN hydrogel system in an early stage of OA-induced rat model showed a great inhibition effect against further OA progression. The OA-induced knees completely recovered as a healthy cartilage without any abnormal symptoms.

7.
Tissue Eng Regen Med ; 18(1): 155-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33058016

RESUMO

BACKGROUND: The delivery of recombinant human bone morphogenetic protein 2 (rhBMP2) by using various carriers has been used to successfully induce bone formation in many animal models. However, the effect of multiple administration of rhBMP2 on bone formation and BMP2 antibody production has not been determined. Our aim was to examine the bone formation activity of rhBMP2 and serum levels of anti-BMP2 antibodies following the repeated administration of rhBMP2 in mice. METHODS: Absorbable collagen sponges or polyphosphazene hydrogels containing rhBMP2 were subcutaneously implanted or injected into one side on the back of six-week-old C57BL/6 mice. Three or 4 weeks later, the same amount of rhBMP2 was administered again with the same carrier into the subcutaneous regions on the other side of the back or into calvarial defects. The effects of a single administration of rhBMP2 on the osteoinductive ability in the ectopic model were compared with those of repeated administrations. In vivo ectopic or orthotopic bone formation was evaluated using microradiography and histological analyses. Serum concentrations of anti-rhBMP2 antibodies were measured by ELISAs. RESULTS: Re-administration of the same amount of rhBMP2 into the subcutaneous area showed a comparable production of ectopic bone as after the first administration. The bone forming ability of repeated rhBMP2 administrations was equal to that of single rhBMP2 administration. The administration of rhBMP2 into calvarial defects, following the first subcutaneous administration of rhBMP2 on the back, completely recovered the defect area with newly regenerated bone within 3 weeks. Repeated administration of rhBMP2 at 4-week intervals did not significantly alter the serum levels of anti-BMP2 antibodies and did not induce any inflammatory response. The serum obtained from rhBMP2-exposed mice had no effect on the ability of rhBMP2 to induce osteogenic gene expressions in MC3T3-E1. CONCLUSION: We suggest that the osteoinductive ability of rhBMP2 is not compromised by repeated administrations. Thus, rhBMP2 can be repeatedly used for bone regeneration at various sites within a short duration.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Osteogênese , Animais , Proteína Morfogenética Óssea 2/administração & dosagem , Osso e Ossos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/administração & dosagem
8.
Adv Sci (Weinh) ; 6(17): 1900597, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31508277

RESUMO

Stem-cell-based tissue engineering requires increased stem cell retention, viability, and control of differentiation. The use of biocompatible scaffolds encapsulating stem cells typically addresses the first two problems. To achieve control of stem cell fate, fine-tuned biocompatible scaffolds with bioactive molecules are necessary. However, given that the fine-tuning of stem cell scaffolds is associated with UV irradiation and in situ scaffold gelation, this process is in conflict with injectability. Herein, a fine-tunable and injectable 3D hydrogel system is developed with the use of thermosensitive poly(organophosphazene) bearing ß-cyclodextrin (ß-CD PPZ) and two types of adamantane-peptides (Ad-peptides) that are associated with mesenchymal stem cell (MSC) differentiation and that serve as stoichiometrically controlled pendants for fine-tuning. Given that complexation of hosts and guests subject to strict stoichiometric control is achieved with simple mixing, these fabricated hydrogels exhibit well-aligned, fine-tuning responses, even in living animals. Injection of MSCs in fine-tuned hydrogels also results in various chondrogenic differentiation levels at three weeks postinjection. This is attributed to the differential controls of Ad-peptides, if MSC preconditioning is excluded. Eventually, the fine-tunable and injectable 3D hydrogel could be applied as platform technology by simply switching the types of peptides bearing adamantane and their stoichiometry.

9.
ACS Appl Mater Interfaces ; 11(38): 34634-34644, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31475516

RESUMO

Intravenous (IV) route is the most commonly used drug-delivery approach. However, the targeting efficiency to tumor through IV delivery is usually less than 10%. To address this limitation, we report a new systemic delivery method utilizing injectable and quadruple-functional hydrogels to improve targeting efficiency through passive, active, and magnetic targeting, and hydrogel-controlled sustained release. The hydrogels consist of a folate/polyethylenimine-conjugated poly(organophosphazene) polymer, which encapsulates small interfering RNA (siRNA) and Au-Fe3O4 nanoparticles to form a nanocapsule (NC) structure by a simple mixing. The hydrogels are localized as a long-term "drug-release depot" after a single subcutaneous injection and sol-gel phase transition. NCs released from the hydrogels enter the circulatory systems and then target the tumor through enhanced permeability and retention/folate/magnetism triple-targeting, over the course of circulation, itself prolonged by the controlled release. In vivo experiments show that 12% of NCs are successfully delivered to the tumor, which is a considerable improvement compared to most results through IV delivery. The sustained targeting of gold to tumor enables two cycles of photothermal therapy, resulting in an enhanced silencing effect of siRNA and considerable reduction of tumor volume, which we are unable to achieve via simple intravenous injection.


Assuntos
Hidrogéis , Hipertermia Induzida , Neoplasias Experimentais , Fototerapia , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Feminino , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biomaterials ; 218: 119338, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310953

RESUMO

Host-guest interaction using ß-cyclodextrin (ß-CD) and adamantane (Ad) allows facile modulation of guest molecule concentration in 3D hydrogels. Based on this phenomenon, we prepared a thermosensitive poly(organophosphazene) bearing ß-CD hydrogel (ß-CD PPZ, as host) and Ad-Arg-Gly-Asp (Ad-RGD, as guest). The structures of synthesized thermosensitive ß-CD PPZ and Ad-RGD were confirmed by 1H NMR and FT-IR. The ß-CD PPZ/Ad-RGD mixture was prepared by simple mixing and elicited thermosensitive properties with the formation of gelation in all Ad-RGDs mixing proportions at the body temperature. Strong and controlled host-guest interactions between ß-CD PPZ and Ad-RGD were observed in 2D-NOESY, DLS, and TEM. Regulated MSC behaviors were elicited based on the use of controlled Ad-RGD amounts at the level of in vitro and in vivo. As the amount of Ad-RGD was increased in the ß-CD PPZ hydrogel, MSC survival rate was enhanced and was prone to express osteogenic factors. While Ad-RGD is absent or low in hydrogel, relatively poor MSC survival rate and adipogenesis were exhibited. Altogether, we verified that survival rate and differentiation of MSCs could be controlled by host-guest interaction system with thermosensitive 3D hydrogel. This proposed 3D hydrogel controlling system with host-guest interaction is expected to be a platform technology as changing guest molecules.


Assuntos
Hidrogéis/química , Nicho de Células-Tronco/fisiologia , Adipogenia/fisiologia , Animais , Células Cultivadas , Feminino , Espectroscopia de Ressonância Magnética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Espectroscopia de Infravermelho com Transformada de Fourier , Taxa de Sobrevida , beta-Ciclodextrinas/química
11.
ACS Appl Mater Interfaces ; 11(17): 15201-15211, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30945843

RESUMO

Daily treatment of diabetes to stabilize blood glucose level poses a challenge for patients with diabetes mellitus. Diabetes is a long-term metabolic disorder, and the treatment lasts for the rest of the patient's life after diagnosis. We presented a new injectable hydrogel depot system using exendin 4 (Ex-4) interactive and complex forming polymeric ionic-nano-particles for long-term antidiabetes treatment. Protamine-conjugated polymer (ProCP) was developed to form ionic-nano-complexes with Ex-4, as the amino-group-rich protamine and the negatively charged Ex-4 ( pI: 4.86) interact with each other due to their opposite electric charges in physiological conditions. Morphologically, the ProCP were nanoparticles in aqueous condition (10 wt % of ProCP in phosphate-buffered solution, <25 °C) and formed condensed ionic- and nano-complexes with Ex-4. The complexes formed a bulk hydrogel when exposed to body temperature. A slow release of the Ex-4/ProCP ionic-nano-complexes occurred from the hydrogel depot, followed by Ex-4 dissociation from the ionic-nano-complexes and hydrolysis of ProCP. Given that the Ex-4 release occurs after the complex releases from the hydrogel, the periods of Ex-4 release and hydrogel maintenance may be similar. The present system showed a considerably prolonged Ex-4 release. Additionally, it showed potential as a long-term effective and reproducible antidiabetes treatment.


Assuntos
Exenatida/química , Hidrogéis/química , Hipoglicemiantes/química , Nanoestruturas/química , Polímeros/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/veterinária , Exenatida/farmacocinética , Exenatida/uso terapêutico , Meia-Vida , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Injeções Subcutâneas , Íons/química , Masculino , Camundongos , Camundongos Nus , Células NIH 3T3 , Imagem Óptica , Polímeros/toxicidade , Protaminas/química , Ratos , Ratos Sprague-Dawley
12.
J Biomed Mater Res B Appl Biomater ; 106(2): 751-759, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334520

RESUMO

An injectable hydrogel system with sustained bone morphogenetic protein 2 (BMP-2) release ability was developed for vertical bone regeneration at peri-implant sites and enhanced osseointegration of dental implants. In three young male beagle dogs, a pair of defects was created on both sides of the mandibular bone. Next, two implants were transplanted into each defect. In situ gelling polymer solutions with or without BMP-2 were applied to cover the implants and mandibular defects. The effects of the in situ gelling and sustained BMP-2 releasing (IGSR) hydrogel system on peri-implant bone regeneration were evaluated by radiologic examination, micro-computed tomography, and histomorphometric analysis. Twelve weeks after the treatment, significant bone generation at the peri-implant site occurred following BMP-2/IGSR hydrogel treatment. Bone volume and mineral density were increased by 1.7- and 1.3-fold, respectively (p < 0.01 and 0.05 vs. control, respectively) for the BMP-2/IGSR hydrogel system. And, 0.57-0.31 mm vertical bone generation was observed at the peri-implant site for the BMP-2/IGSR hydrogel system, while rare vertical bone generation occurred in the control group. The BMP-2/IGSR hydrogel system significantly increased bone to implant contact % between induced bone and existing bone (p < 0.05 and 0.01 vs. control). These vertical bone regeneration and higher osseointegration levels demonstrated the effectiveness of the BMP-2/IGSR hydrogel system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 751-759, 2018.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea/efeitos dos fármacos , Hidrogéis , Mandíbula/metabolismo , Traumatismos Mandibulares/terapia , Compostos Organofosforados , Polímeros , Animais , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Modelos Animais de Doenças , Cães , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Mandíbula/patologia , Traumatismos Mandibulares/metabolismo , Traumatismos Mandibulares/patologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Polímeros/química , Polímeros/farmacologia
13.
Nat Commun ; 8(1): 533, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912446

RESUMO

The cystic cavity that develops following injuries to brain or spinal cord is a major obstacle for tissue repair in central nervous system (CNS). Here we report that injection of imidazole-poly(organophosphazenes) (I-5), a hydrogel with thermosensitive sol-gel transition behavior, almost completely eliminates cystic cavities in a clinically relevant rat spinal cord injury model. Cystic cavities are bridged by fibronectin-rich extracellular matrix. The fibrotic extracellular matrix remodeling is mediated by matrix metalloproteinase-9 expressed in macrophages within the fibrotic extracellular matrix. A poly(organophosphazenes) hydrogel lacking the imidazole moiety, which physically interacts with macrophages via histamine receptors, exhibits substantially diminished bridging effects. I-5 injection improves coordinated locomotion, and this functional recovery is accompanied by preservation of myelinated white matter and motor neurons and an increase in axonal reinnervation of the lumbar motor neurons. Our study demonstrates that dynamic interactions between inflammatory cells and injectable biomaterials can induce beneficial extracellular matrix remodeling to stimulate tissue repair following CNS injuries.The cystic cavity that develops following injuries to brain or spinal cord is a major obstacle. Here the authors show an injection of imidazole poly(organophosphazenes), a hydrogel with thermosensitive sol-gel transition behavior, almost completely eliminates cystic cavities in a clinically relevant rat spinal cord injury model.


Assuntos
Matriz Extracelular/fisiologia , Hidrogéis/administração & dosagem , Regeneração/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Feminino , Fibronectinas/metabolismo , Hidrogéis/química , Imidazóis/síntese química , Imidazóis/química , Macrófagos/fisiologia , Metaloproteinase 9 da Matriz/genética , Camundongos , Células NIH 3T3 , Polímeros/síntese química , Polímeros/química , Ratos Sprague-Dawley , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/patologia
14.
Biomaterials ; 132: 16-27, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28399459

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) possesses strong anti-cancer potential because of its ability to specifically kill cancer cells. However, clinical use of TRAIL is impeded by its short in vivo half-life and native TRIAL-resistant cancer cell populations. To overcome these limitations, we designed a multiple magnetic hyperthermia (MHT)-mediated TRAIL release system for combination therapy using an injectable, biodegradable and thermosensitive polymeric hydrogel. In this system, positively charged TRAIL and hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) are complexed with negatively charged poly(organophosphazene) polymers via ionic and hydrophobic interactions, respectively. Transmission electron microscopy images showed a nano-sized core-shell structure of the TRAIL/SPION polymeric nanocomplex in aqueous solution that transformed into a hydrogel at body temperature. Hyperthermia can enhance the release of TRAIL from hydrogels through temperature-sensitive hydrogel dissolution. TRAIL-resistant U-87 MG cells were killed by the combination of TRAIL and multiple hyperthermia via caspase-3 and -8 active apoptosis. The hyperthermia-enhanced cytotoxicity of TRAIL was dependent on the hyperthermia cycle number and corresponding TRAIL release. Significant in vivo tumor reduction was observed by combining 2 cycles of mild MHT and TRAIL release using a single injection of TRAIL/SPION nanocomplex hydrogels without damage to main organs. Furthermore, the therapeutic outcomes can be monitored by long-term magnetic resonance imaging.


Assuntos
Antineoplásicos/administração & dosagem , Hidrogéis/química , Nanopartículas de Magnetita/química , Compostos Organofosforados/química , Polímeros/química , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Meia-Vida , Xenoenxertos , Temperatura Alta , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Tamanho da Partícula , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Distribuição Tecidual
15.
Biomaterials ; 122: 91-104, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28110173

RESUMO

For a substance to be used as a drug delivery carrier and tissue inducible material for a target disease, its drug release rate and physical properties should be optimized to facilitate the healing process. We developed multi-tunable hydrogel systems with various physical properties and release behaviors to determine the optimal conditions for bone regeneration. Five injectable poly(phosphazene) hydrogels were developed with different types and amounts of anionic side-chains. The five polymer hydrogels showed considerably different in vitro and in vivo performances for sol-gel phase transition, dissolution/degradation, water uptake, and pore size. Furthermore, bone morphogenetic protein-2 (BMP-2) was loaded into the polymer hydrogels by forming nano-sized ionic-complexes with each polymer. The five types of nanocomplex hydrogels showed completely different BMP-2 release rates. By administering each nanocomplex hydrogel to mouse calvarial, we identified the most adapted nanocomplex hydrogel system for effective bone regeneration. The BMP-2 release rate was the most important factor in effective bone regeneration. Finally, the bone regeneration effect of the optimized hydrogel system was investigated in a critical-sized calvarial defect model.


Assuntos
Implantes Absorvíveis , Proteína Morfogenética Óssea 2/administração & dosagem , Regeneração Óssea/fisiologia , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Hidrogéis/química , Fraturas Cranianas/tratamento farmacológico , Animais , Proteína Morfogenética Óssea 2/química , Regeneração Óssea/efeitos dos fármacos , Difusão , Hidrogéis/administração & dosagem , Injeções , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Fraturas Cranianas/patologia , Resultado do Tratamento
16.
Oncotarget ; 8(65): 108848-108858, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312573

RESUMO

Peritoneal carcinomatosis (PC) of gastric origin has a poor prognosis with short survival due to lack of effective therapeutic modalities. Here, we evaluated the therapeutic efficacy of an injectable thermosensitive poly (organophosphazene) (PPZ) hydrogel with docetaxel (DTX-gel) to develop an effective therapeutic agent for patient with PC. Three days after inoculation of highly metastatic 44As3Luc cells into peritoneal cavity, the mice were intravenously or intraperitoneally administered with docetaxel alone (DTX-sol IV or IP), and intraperitoneally injected with DTX-gel. The anti-tumor activity was monitored by bioluminescence live imaging system. Compared to DTX-sol IV or IP, the tumor growth was significantly reduced in the DTX-gel treated mice (p<0.0001, p=0.0001). Furthermore, the survival rate was significantly increased in the DTX-gel treated mice compared to DTX-sol IV or IP treated mice (p<0.0001, p=0.0068). Our results demonstrated that DTX-gel suppresses peritoneal metastasis by continuing release of chemotherapy agent, which leads to increase the survival rate in a PC model. Therefore, biodegradable thermosensitive hydrogel with docetaxel system can be a good anti-cancer agent for PC.

17.
Biomaterials ; 112: 248-256, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768977

RESUMO

An injectable hydrogel showing temperature-dependent chemical crosslinking was developed to combine injectabilities of physical hydrogels with dense structures of chemical hydrogels for applications in stem cell delivery-mediated tissue regeneration systems showing easy administration and maintenance of well-dispersed cells within the hydrogel. Hydrophobic methacryl groups were applied to thermosensitive poly(organophosphazenes) to induce temperature mediated hydrophobic interaction and chemical crosslinking. UV pretreated polymer solution showed chemical crosslinking not before injection only after injection into the body even it was already exposed to UV. As this injectable hydrogel showed small pore-sizes, it was guessed cell holding without any adhesive moieties were available and showed the potentials for a cell scaffold. In this study, temperature dependent chemical crosslinking and proliferation and differentiation of the encapsulated hMSCs into various tissues were observed in the hydrogels after injection.


Assuntos
Hidrogéis/administração & dosagem , Hidrogéis/química , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Alicerces Teciduais , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/efeitos da radiação , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/efeitos da radiação , Injeções , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Temperatura , Raios Ultravioleta , Viscosidade
18.
Biomaterials ; 106: 13-23, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27543919

RESUMO

Magnetic hyperthermia therapy (MHT) has been explored as an efficient and non-invasive treatment for cancer. However, the short retention time of magnetic nanoparticles localized within tumor targets hinders its potential for repeatable treatment. We report herein on the development of an injectable, biodegradable, thermosensitive and superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels (SPION-NHs) system for multiple MHT and long-term magnetic resonance imaging (MRI) contrast. Transmission electron microscopic images showed the core-shell structure of self-assembled poly(organophosphazene) nanocapsules and multiple embedded SPIONs within the core. The SPION-loaded nanocapusule solution can be transformed into hydrogel form at body temperature via the hydrophobic interaction. The cancer cells were killed efficiently using multiple MHT at moderate temperature through necrosis, as compared to single MHT-induced apoptosis. More than three weeks retention of SPIONs within tumors after a single injection of SPION-NHs facilitated successful multiple MHT, which was monitored by T2-weighted MRI. Furthermore, excellent in vivo anti-cancer effect was observed after four cycles of MHT without severe damage on the surrounding healthy tissues, which was in contrast to single magnetic thermal ablation.


Assuntos
Dextranos/administração & dosagem , Dextranos/química , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Nanocápsulas/administração & dosagem , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/terapia , Animais , Linhagem Celular Tumoral , Meios de Contraste/administração & dosagem , Meios de Contraste/síntese química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Humanos , Hidrogéis/química , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Nanocápsulas/química , Temperatura , Nanomedicina Teranóstica/métodos , Resultado do Tratamento
19.
ACS Macro Lett ; 5(3): 297-300, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35614724

RESUMO

We developed an injectable chemical drug/gene dual delivery platform system for long-term combination therapy. Ternary nanosized thermosensitive polymer/chemical drug/gene-(PCG) complexes showing sol-gel transition were prepared by simple mixing of three components via hydrophobic and ionic interaction. The PCG complex hydrogel showed sustained release of chemical drug and genes for 40 days without denaturalization of genes in vitro. Dual delivery-mediated anticancer effects of PCG complexes were shown in vitro and in an in vivo xenograft model for up to 1 month. Therefore, this dual delivery platform is expected to be a new effective system for treatment of diseases via long-term chemical drug/gene combination therapy.

20.
Biomed Res Int ; 2015: 926291, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491693

RESUMO

Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Cerâmica/farmacologia , Hidroxiapatitas/farmacologia , Crânio/lesões , Animais , Humanos , Masculino , Camundongos , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA