Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5624, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561460

RESUMO

Complex phenomena are prevalent during the formation of materials, which affect their processing-structure-function relationships. Thin films of methylammonium lead iodide (CH3NH3PbI3, MAPI) are processed by spin coating, antisolvent drop, and annealing of colloidal precursors. The structure and properties of transient and stable phases formed during the process are reported, and the mechanistic insights of the underlying transitions are revealed by combining in situ data from grazing-incidence wide-angle X-ray scattering and photoluminescence spectroscopy. Here, we report the detailed insights on the embryonic stages of organic-inorganic perovskite formation. The physicochemical evolution during the conversion proceeds in four steps: i) An instant nucleation of polydisperse MAPI nanocrystals on antisolvent drop, ii) the instantaneous partial conversion of metastable nanocrystals into orthorhombic solvent-complex by cluster coalescence, iii) the thermal decomposition (dissolution) of the stable solvent-complex into plumboiodide fragments upon evaporation of solvent from the complex and iv) the formation (recrystallization) of cubic MAPI crystals in thin film.

2.
J Am Chem Soc ; 141(1): 635-642, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30537833

RESUMO

The new compound NaCu4Se4 forms by the reaction of CuO and Cu in a molten sodium polyselenide flux, with the existence of CuO being unexpectedly critical to its synthesis. It adopts a layered hexagonal structure (space group P63/ mmc with cell parameters a = 3.9931(6) Å and c = 25.167(5) Å), consisting of infinite two-dimensional [Cu4Se4]- slabs separated by Na+ cations. X-ray photoelectron spectroscopy suggests that NaCu4Se4 is mixed-valent with the formula (Na+)(Cu+)4(Se2-)(Se-)(Se2)2-. NaCu4Se4 is a p-type metal with a carrier density of ∼1021 cm-3 and a high hole mobility of ∼808 cm2 V-1 s-1 at 2 K based on electronic transport measurements. First-principles calculations suggest the density of states around the Fermi level are composed of Cu-d and Se-p orbitals. At 2 K, a very large transverse magnetoresistance of ∼1400% was observed, with a nonsaturating, linear dependence on field up to 9 T. Our results indicate that the use of metal oxide chemical precursors can open reaction paths to new low-dimensional compounds.

3.
Nat Commun ; 9(1): 2792, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022022

RESUMO

Hybrid organic-inorganic perovskites are emerging semiconductors for cheap and efficient photovoltaics and light-emitting devices. Different from conventional inorganic semiconductors, hybrid perovskites consist of coexisting organic and inorganic sub-lattices, which present disparate atomic masses and bond strengths. The nanoscopic interpenetration of these disparate components, which lack strong electronic and vibrational coupling, presents fundamental challenges to the understanding of charge and heat dissipation. Here we study phonon population and equilibration processes in methylammonium lead iodide (MAPbI3) by transiently probing the vibrational modes of the organic sub-lattice following above-bandgap optical excitation. We observe inter-sub-lattice thermal equilibration on timescales ranging from hundreds of picoseconds to a couple of nanoseconds. As supported by a two-temperature model based on first-principles calculations, the slow thermal equilibration is attributable to the sequential phonon populations of the inorganic and organic sub-lattices, respectively. The observed long-lasting thermal non-equilibrium offers insights into thermal transport and heat management of the emergent hybrid material class.

4.
J Am Chem Soc ; 139(46): 16494-16497, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29108414

RESUMO

The elimination of trivalent minor actinides (Am3+, Cm3+) is of great concern for the safe management and operation of nuclear waste geological repository and environmental remediation. However, because of the effects of protonation, most of the present sorbents exhibit inferior removal properties toward minor actinides at low pH values. Finding stable ion-exchangers with high sorption capacities, fast kinetics, and good removal toward minor actinides from highly acidic solution remains a great challenge. This work reports a new family member of KMS materials with a robust acid-stable layered metal sulfide structure (KInSn2S6, KMS-5) bearing strong affinity toward trivalent minor actinides. KMS-5 can simultaneously separate trivalent 241Am and 152Eu from acidic solutions below pH 2 with high efficiency (>98%). The ion-exchange kinetics is extremely fast (<10 min) and the largest distribution coefficient is as high as 5.91 × 104 mL/g. KMS-5 is also capable of efficiently removing 241Am from acidic solution containing various competitive cations in large excess. In addition, the ion exchange process of 241Am by KMS-5 is reversible and the loaded material can be easily eluted by high concentration of potassium chloride. This work represents the first case for efficient minor actinides removal from highly acidic solution using layered metal sulfide materials.

5.
Adv Mater ; 29(23)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28397337

RESUMO

Tin (Sn)-based perovskites are increasingly attractive because they offer lead-free alternatives in perovskite solar cells. However, depositing high-quality Sn-based perovskite films is still a challenge, particularly for low-temperature planar heterojunction (PHJ) devices. Here, a "multichannel interdiffusion" protocol is demonstrated by annealing stacked layers of aqueous solution deposited formamidinium iodide (FAI)/polymer layer followed with an evaporated SnI2 layer to create uniform FASnI3 films. In this protocol, tiny FAI crystals, significantly inhibited by the introduced polymer, can offer multiple interdiffusion pathways for complete reaction with SnI2 . What is more, water, rather than traditional aprotic organic solvents, is used to dissolve the precursors. The best-performing FASnI3 PHJ solar cell assembled by this protocol exhibits a power conversion efficiency (PCE) of 3.98%. In addition, a flexible FASnI3 -based flexible solar cell assembled on a polyethylene naphthalate-indium tin oxide flexible substrate with a PCE of 3.12% is demonstrated. This novel interdiffusion process can help to further boost the performance of lead-free Sn-based perovskites.

6.
J Am Chem Soc ; 139(8): 2900-2903, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28191943

RESUMO

We report a unique reaction type for facile synthesis of ultrafine and well-dispersed Pt nanoparticles supported on chalcogel surfaces. The nanoparticles are obtained by in situ Pt2+ reduction of a chalcogel network formed by the metathesis reaction between K2PtCl4 and Na4SnS4. The rapid catalytic ability of the chalcogel-supported Pt nanoparticles is demonstrated in a recyclable manner by using 4-nitrophenol reduction as a probe reaction.

7.
J Am Chem Soc ; 139(2): 836-842, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27977193

RESUMO

Tin-based halide perovskite materials have been successfully employed in lead-free perovskite solar cells, but the tendency of these materials to form leakage pathways from p-type defect states, mainly Sn4+ and Sn vacancies, causes poor device reproducibility and limits the overall power conversion efficiencies (PCEs). Here, we present an effective process that involves a reducing vapor atmosphere during the preparation of Sn-based halide perovskite solar cells to solve this problem, using MASnI3, CsSnI3, and CsSnBr3 as the representative absorbers. This process enables the fabrication of remarkably improved solar cells with PCEs of 3.89%, 1.83%, and 3.04% for MASnI3, CsSnI3, and CsSnBr3, respectively. The reducing vapor atmosphere process results in more than 20% reduction of Sn4+/Sn2+ ratios, which leads to greatly suppressed carrier recombination, to a level comparable to their lead-based counterparts. These results mark an important step toward a deeper understanding of the intrinsic Sn-based halide perovskite materials, paving the way to the realization of low-cost and lead-free Sn-based halide perovskite solar cells.

8.
J Am Chem Soc ; 138(48): 15580-15586, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934033

RESUMO

Cyanide monolayers on Au{111} restructure from a hexagonal close-packed lattice to a mixed-orientation "ribbon" structure through thermal annealing. The new surface structure loses most of the observed surface features characterizing the initial as-adsorbed system with "ribbon" domain boundaries isolating rotationally offset surface regions where the orientation is guided by the underlying gold lattice. A blue shift to higher frequencies of the CN vibration to 2235 cm-1 with respect to the as-adsorbed CN/Au{111} vibration at 2146 cm-1 is observed. In addition, a new low-frequency mode is observed at 145 cm-1, suggesting a chemical environment change similar to gold-cyanide crystallization. We discuss this new structure with respect to a mixed cyanide/isocyanide monolayer and propose a bonding scheme consisting of Au-CN and Au-NC bound molecules that are oriented normal to the Au{111} surface.

9.
Nano Lett ; 16(10): 6282-6289, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27616333

RESUMO

ß-Amyloid aggregates in the brain play critical roles in Alzheimer's disease, a chronic neurodegenerative condition. Amyloid-associated metal ions, particularly zinc and copper ions, have been implicated in disease pathogenesis. Despite the importance of such ions, the binding sites on the ß-amyloid peptide remain poorly understood. In this study, we use scanning tunneling microscopy, circular dichroism, and surface-enhanced Raman spectroscopy to probe the interactions between Cu2+ ions and a key ß-amyloid peptide fragment, consisting of the first 16 amino acids, and define the copper-peptide binding site. We observe that in the presence of Cu2+, this peptide fragment forms ß-sheets, not seen without the metal ion. By imaging with scanning tunneling microscopy, we are able to identify the binding site, which involves two histidine residues, His13 and His14. We conclude that the binding of copper to these residues creates an interstrand histidine brace, which enables the formation of ß-sheets.


Assuntos
Peptídeos beta-Amiloides/química , Sítios de Ligação , Cobre/química , Doença de Alzheimer , Histidina/química , Humanos , Fragmentos de Peptídeos , Ligação Proteica , Estrutura Secundária de Proteína
10.
J Phys Chem Lett ; 7(5): 776-82, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26877089

RESUMO

The development of Sn-based perovskite solar cells has been challenging because devices often show short-circuit behavior due to poor morphologies and undesired electrical properties of the thin films. A low-temperature vapor-assisted solution process (LT-VASP) has been employed as a novel kinetically controlled gas-solid reaction film fabrication method to prepare lead-free CH3NH3SnI3 thin films. We show that the solid SnI2 substrate temperature is the key parameter in achieving perovskite films with high surface coverage and excellent uniformity. The resulting high-quality CH3NH3SnI3 films allow the successful fabrication of solar cells with drastically improved reproducibility, reaching an efficiency of 1.86%. Furthermore, our Kelvin probe studies show the VASP films have a doping level lower than that of films prepared from the conventional one-step method, effectively lowering the film conductivity. Above all, with (LT)-VASP, the short-circuit behavior often obtained from the conventional one-step-fabricated Sn-based perovskite devices has been overcome. This study facilitates the path to more successful Sn-perovskite photovoltaic research.

11.
Adv Mater ; 28(3): 440-6, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26588665

RESUMO

Conjugated small-molecule hole-transport materials (HTMs) with tunable energy levels are designed and synthesized for efficient perovskite solar cells. A champion device with efficiency of 16.2% is demonstrated using a dopant-free DERDTS-TBDT HTM, while the DORDTS-DFBT-HTM-based device shows an inferior performance of 6.2% due to its low hole mobility and unmatched HOMO level with the valence band of perovskite film.

12.
Nat Nanotechnol ; 11(1): 75-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26457966

RESUMO

Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiO(x)/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

13.
ACS Appl Mater Interfaces ; 7(44): 24601-7, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26488682

RESUMO

Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of these electrodes are limited by their poor thermal and chemical stabilities. Existing methods for addressing this challenge mainly focus on protecting the nanowire network with additional layers that require vacuum processes, which can lead to an increment in manufacturing cost. Here, we report a straightforward strategy of a sol-gel processing as a fast and robust way to improve the stabilities of silver nanowires. Compared with reported nanoparticles embedded in nanowire networks, better thermal and chemical stabilities are achieved via sol-gel coating of TiO2 over the silver nanowire networks. The conformal surface coverage suppressed surface diffusion of silver atoms and prevented chemical corrosion from the environment. These results highlight the important role of the functional layer in providing better thermal and chemical stabilities along with improved electrical properties and mechanical robustness. The silver nanowire/TiO2 composite electrodes were applied as the source and drain electrodes for In2O3 thin-film transistors (TFTs) and the devices exhibited improved electrical performance annealed at 300 °C without the degradation of the electrodes. These key findings not only demonstrated a general and effective method to improve the thermal and chemical stabilities of metal nanowire networks but also provided a basic guideline toward rational design of highly efficient and robust composite electrodes.

14.
Small ; 11(38): 5079-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26237579

RESUMO

2D molybdenum disulfide (MoS2 ) has distinct optical and electronic properties compared to aggregated MoS2 , enabling wide use of these materials for electronic and biomedical applications. However, the hazard potential of MoS2 has not been studied extensively. Here, a comprehensive analysis of the pulmonary hazard potential of three aqueous suspended forms of MoS2 -aggregated MoS2 (Agg-MoS2 ), MoS2 exfoliated by lithiation (Lit-MoS2 ), and MoS2 dispersed by Pluronic F87 (PF87-MoS2 )-is presented. No cytotoxicity is detected in THP-1 and BEAS-2B cell lines. However, Agg-MoS2 induces strong proinflammatory and profibrogenic responses in vitro. In contrast, Lit- and PF87-MoS2 have little or no effect. In an acute toxicity study in mice, Agg-MoS2 induces acute lung inflammation, while Lit-MoS2 and PF87-MoS2 have little or no effect. In a subchronic study, there is no evidence of pulmonary fibrosis in response to all forms of MoS2 . These data suggest that exfoliation attenuates the toxicity of Agg-MoS2 , which is an important consideration toward the safety evaluation and use of nanoscale MoS2 materials for industrial and biological applications.


Assuntos
Dissulfetos/toxicidade , Pulmão/patologia , Molibdênio/toxicidade , Testes de Toxicidade/métodos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Dissulfetos/química , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Molibdênio/química
15.
Nat Commun ; 6: 7269, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26068804

RESUMO

Perovskite photovoltaics offer a compelling combination of extremely low-cost, ease of processing and high device performance. The optoelectronic properties of the prototypical CH3NH3PbI3 can be further adjusted by introducing other extrinsic ions. Specifically, chlorine incorporation has been shown to affect the morphological development of perovksite films, which results in improved optoelectronic characteristics for high efficiency. However, it requires a deep understanding to the role of extrinsic halide, especially in the absence of unpredictable morphological influence during film growth. Here we report an effective strategy to investigate the role of the extrinsic ion in the context of optoelectronic properties, in which the morphological factors that closely correlate to device performance are mostly decoupled. The chlorine incorporation is found to mainly improve the carrier transport across the heterojunction interfaces, rather than within the perovskite crystals. Further optimization according this protocol leads to solar cells achieving power conversion efficiency of 17.91%.

16.
ACS Nano ; 9(7): 7714-21, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26098134

RESUMO

Halide perovskites (PVSK) have attracted much attention in recent years due to their high potential as a next generation solar cell material. To further improve perovskites progress toward a state-of-the-art technology, it is desirable to create a tandem structure in which perovskite may be stacked with a current prevailing solar cell such as silicon (Si) or Cu(In,Ga)(Se,S)2 (CIGS). The transparent top electrode is one of the key components as well as challenges to realize such tandem structure. Herein, we develop a multilayer transparent top electrode for perovskite photovoltaic devices delivering an 11.5% efficiency in top illumination mode. The transparent electrode is based on a dielectric/metal/dielectric structure, featuring an ultrathin gold seeded silver layer. A four terminal tandem solar cell employing solution processed CIGS and perovskite cells is also demonstrated with over 15% efficiency.

17.
Nat Commun ; 6: 6391, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25736823

RESUMO

Thin-film solar cells made with amorphous silicon (a-Si:H) or organic semiconductors are considered as promising renewable energy sources due to their low manufacturing cost and light weight. However, the efficiency of single-junction a-Si:H or organic solar cells is typically <10%, insufficient for achieving grid parity. Here we demonstrate an efficient double-junction photovoltaic cell by employing an a-Si:H film as a front sub-cell and a low band gap polymer:fullerene blend film as a back cell on planar glass substrates. Monolithic integration of 6.0% efficienct a-Si:H and 7.5% efficient polymer:fullerene blend solar cells results in a power conversion efficiency of 10.5%. Such high-efficiency thin-film tandem cells can be achieved by optical management and interface engineering of fully optimized high-performance front and back cells without sacrificing photovoltaic performance in both cells.

18.
Phys Chem Chem Phys ; 17(1): 112-6, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25354141

RESUMO

Thin film photovoltaic cells based on hybrid halide perovskite absorbers have emerged as promising candidates for next generation photovoltaics. Here, we have characterized and identified the defect energy distribution in the CH3NH3PbI3 perovskite using admittance spectroscopy, which reveals a deep defect state ∼0.16 eV above the valence band. According to theoretical calculations, the defect state is possibly attributed to iodine interstitials (Ii), which can become the non-radiative recombination centers in the absorber.

19.
Nano Lett ; 15(1): 662-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25513830

RESUMO

We successfully demonstrated an integrated perovskite/bulk-heterojunction (BHJ) photovoltaic device for efficient light harvesting and energy conversion. Our device efficiently integrated two photovoltaic layers, namely a perovskite film and organic BHJ film, into the device. The device structure is ITO/TiO2/perovskite/BHJ/MoO3/Ag. A wide bandgap small molecule DOR3T-TBDT was used as donor in the BHJ film, and a power conversion efficiency (PCE) of 14.3% was achieved in the integrated device with a high short circuit current density (JSC) of 21.2 mA cm(-2). The higher JSC as compared to that of the traditional perovskite/HTL (hole transporting layer) device (19.3 mA cm(-2)) indicates that the BHJ film absorbs light and contributes to the current density of the device. Our result further suggests that the HTL in traditional perovskite solar cell, even with good light absorption capability, cannot contribute to the overall device photocurrent, unless this HTL becomes a BHJ layer (by adding electron transporting material like PC71BM).

20.
ACS Nano ; 8(9): 9164-72, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25106060

RESUMO

A fully solution-processed high performance Cu2ZnSn(S,Se)4 (CZTSSe, kesterite) device has been demonstrated. It is based on the rational engineering of elemental spatial distributions in the bulk and particularly near the surface of the film from nanocrystal precursors. The nanocrystals are synthesized through a modified colloidal approach, with excellent solubility over a large compositional window, followed by a selenization process to form the absorber. The X-ray photoluminescence (XPS) depth profiling indicates an undesirable Sn-rich surface of the selenized film. An excessive Zn species was quantitatively introduced through nanocrystals precursor to correct the element distribution, and accordingly a positive correlation between the spatial composition in the bulk/surface film and the resulting device parameter is established. The enhanced device performance is associated with the reduced interfacial recombination. With a Zn content 1.6 times more than the stoichiometry; the optimized device, which is fabricated by employing a full solution process from the absorber to the transparent top electrode, demonstrates a performance of 8.6%. This composition-control approach through stoichiometric adjustments of nanocrystal precursors, and the developed correlation between the spatial composition and device performance may also benefit other multielement-based photovoltaics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...