Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
World J Urol ; 42(1): 285, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695883

RESUMO

PURPOSE: This study is to investigate the diagnostic value of 68Ga-PSMA-11 in improving the concordance between mpMRI-TB and combined biopsy (CB) in detecting PCa. METHODS: 115 consecutive men with 68Ga-PSMA-11 PET/CT prior to prostate biopsy were included for analysis. PSMA intensity, quantified as maximum standard uptake value (SUVmax), minimum apparent diffusion coefficient (ADCmin) and other clinical characteristics were evaluated relative to biopsy concordance using univariate and multivariate logistic regression analyses. A prediction model was developed based on the identified parameters, and a dynamic online diagnostic nomogram was constructed, with its discrimination evaluated through the area under the ROC curve (AUC) and consistency assessed using calibration plots. To assess its clinical applicability, a decision curve analysis (DCA) was performed, while internal validation was conducted using bootstrapping methods. RESULTS: Concordance between mpMRI-TB and CB occurred in 76.5% (88/115) of the patients. Multivariate logistic regression analyses performed that SUVmax (OR= 0.952; 95% CI 0.917-0.988; P= 0.010) and ADCmin (OR= 1.006; 95% CI 1.003-1.010; P= 0.001) were independent risk factors for biopsy concordance. The developed model showed a sensitivity, specificity, accuracy and AUC of 0.67, 0.78, 0.81 and 0.78 in the full sample. The calibration curve demonstrated that the nomogram's predicted outcomes closely resembled the ideal curve, indicating consistency between predicted and actual outcomes. Furthermore, the decision curve analysis (DCA) highlighted the clinical net benefit achievable across various risk thresholds. These findings were reinforced by internal validation. CONCLUSIONS: The developed prediction model based on SUVmax and ADCmin showed practical value in guiding the optimization of prostate biopsy pattern. Lower SUVmax and Higher ADCmin values are associated with greater confidence in implementing mono-TB and safely avoiding SB, effectively balancing benefits and risks.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Idoso , Humanos , Masculino , Biópsia/métodos , Isótopos de Gálio , Radioisótopos de Gálio , Biópsia Guiada por Imagem/métodos , Nomogramas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Valor Preditivo dos Testes , Próstata/patologia , Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Estudos Retrospectivos , Medição de Risco
2.
J Bone Oncol ; 46: 100604, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38765702

RESUMO

Osteosarcoma (OS), a malignant tumor, originates from the bone marrow. Currently, treatment for OS remains limited, making it urgent to understand the immune response in the tumor microenvironment of patients with OS. A comprehensive bioinformatics analysis was performed, including cell clustering subgroups, differential expression genes screening, proposed temporal order, and genomic variant analysis on single-cell RNA-sequencing data, from ten pre-chemotherapy patients and eleven post-chemotherapy patients. Subsequently, we analyzed the differentiation trajectories of osteoblasts, osteoclasts, fibroblasts, myeloid cells, and tumor-infiltrating lymphocytes (TILs) in detail to compare the changes in cell proportions and differential genes pre- and post-chemotherapy. The nine cell types were identified, including fibroblasts, myeloid cells, osteoblasts, TILs, osteoclasts, proliferative osteoblasts, pericytes, endothelial cells, and B cells. Post-chemotherapy treatment, the proportions of myeloid cells and TILs in OS were declined, while the number of osteoblasts was elevated. Besides, a decrease was observed in CD74, FTL, FTH1, MT1X and MT2A, and an increase in PTN, COL3A1, COL1A1, IGFBP7 and FN1. Meanwhile, EMT, DNA repair, G2M checkpoint, and E2F targets were highly enriched post-chemotherapy. Furthermore, there was a down-regulation in the proportions of CD14 monocytes, Tregs, NK cells and CD1C-/CD141-DCs, while an up-regulation was observed in the proportions of SELENOP macrophages, IL7R macrophages, COL1A1 macrophages, CD1C DCs, CD4+ T cells and CD8+ T cells. Overall, these findings revealed changes in the tumor microenvironment of OS post-chemotherapy treatment, providing a new direction for investigating OS treatment.

3.
Plants (Basel) ; 13(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732436

RESUMO

MYBs constitute the second largest transcription factor (TF) superfamily in flowering plants with substantial structural and functional diversity, which have been brought into focus because they affect flower colors by regulating anthocyanin biosynthesis. Up to now, the genomic data of several Chrysanthemum species have been released, which provides us with abundant genomic resources for revealing the evolution of the MYB gene family in Chrysanthemum species. In the present study, comparative analyses of the MYB gene family in six representative species, including C. lavandulifolium, C. seticuspe, C. ×morifolium, Helianthus annuus, Lactuca sativa, and Arabidopsis thaliana, were performed. A total of 1104 MYBs, which were classified into four subfamilies and 35 lineages, were identified in the three Chrysanthemum species (C. lavandulifolium, C. seticuspe, and C. ×morifolium). We found that whole-genome duplication and tandem duplication are the main duplication mechanisms that drove the occurrence of duplicates in CmMYBs (particularly in the R2R3-MYB subfamily) during the evolution of the cultivated chrysanthemums. Sequence structure and selective pressure analyses of the MYB gene family revealed that some of R2R3-MYBs were subjected to positive selection, which are mostly located on the distal telomere segments of the chromosomes and contain motifs 7 and 8. In addition, the gene expression analysis of CmMYBs in different organs and at various capitulum developmental stages of C. ×morifolium indicated that CmMYBS2, CmMYB96, and CmMYB109 might be the negative regulators for anthocyanin biosynthesis. Our results provide the phylogenetic context for research on the genetic and functional evolution of the MYB gene family in Chrysanthemum species and deepen our understanding of the regulatory mechanism of MYB TFs on the flower color of C. ×morifolium.

4.
Nano Lett ; 24(20): 6183-6191, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728596

RESUMO

Two-dimensional (2D) materials are promising candidates for spintronic applications. Maintaining their atomically smooth interfaces during integration of ferromagnetic (FM) electrodes is crucial since conventional metal deposition tends to induce defects at the interfaces. Meanwhile, the difficulties in picking up FM metals with strong adhesion and in achieving conductance match between FM electrodes and spin transport channels make it challenging to fabricate high-quality 2D spintronic devices using metal transfer techniques. Here, we report a solvent-free magnetic electrode transfer technique that employs a graphene layer to assist in the transfer of FM metals. It also serves as part of the FM electrode after transfer for optimizing spin injection, which enables the realization of spin valves with excellent performance based on various 2D materials. In addition to two-terminal devices, we demonstrate that the technique is applicable for four-terminal spin valves with nonlocal geometry. Our results provide a promising future of realizing 2D spintronic applications using the developed magnetic electrode transfer technique.

5.
Environ Toxicol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587027

RESUMO

BACKGROUNDS: Non-small cell lung carcinoma (NSCLC) is a common type of lung cancer. Prior investigations have elucidated the pivotal role of miR-29b-3p in restraining tumor growth and metastasis. Nonetheless, it remains to be determined whether miR-29b-3p can effectively suppress NSCLC progression and enhance the sensitivity of NSCLC cells to cisplatin. This investigation sought to determine the mechanism by which miR-29b-3p inhibited the advancement of NSCLC and mitigated resistance to cisplatin. METHODS: We initially assessed miR-29b-3p and VEGF levels in NSCLC tissues and cell lines. Next, miR-29b-3p expression was elevated in NSCLC cell lines H1975 and A549 by overexpression plasmid transfection. Following this, a sequence of molecular biology experiments was conducted to evaluate the impact of miR-29b-3p on the biological behaviors of NSCLC cells and their resistance to cisplatin. Additionally, we predicted VEGF was a target gene of miR-29b-3p by bioinformatics analysis. We next employed western blot to evaluate the protein expression of Nrf2 and HO-1 in NSCLC cells. Finally, we elucidated the effects of VEGF and Nrf2/HO-1pathway on NSCLC progression and cisplatin resistance by in vitro assays. RESULTS: In comparison to paracancerous tissues and human normal lung epithelial cells, the expression of miR-29b-3p was notably reduced and VEGF expression was clearly elevated in NSCLC tissues and cells. Moreover, miR-29b-3p upregulated obviously suppressed the biological activities of NSCLC cells and increased their sensitivity to cisplatin. Furthermore, in NSCLC cells, miR-29b-3p bound to VEGF and negatively regulate its transcription. Additionally, miR-29b-3p overexpression also inhibited the Nrf2/HO-1 signaling pathway. Finally, the overexpression of VEGF and the activation of the Nrf2/HO-1 pathway reversed miR-29b-3p-mediated inhibitory effect on biological behaviors of NSCLC cells and increased the cisplatin resistance. CONCLUSION: Our findings indicate that miR-29b-3p impedes NSCLC cells' biological behaviors and augments their sensitivity to cisplatin by targeting VEGF to modulate the Nfr2/HO-1 signaling pathway.

6.
Animals (Basel) ; 14(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672292

RESUMO

Eggshell gloss is an important characteristic for the manifestation of eggshell appearance. However, no study has yet identified potential candidate genes for eggshell gloss between high-gloss (HG) and low-gloss (LG) chickens. The aim of this study was to perform a preliminary investigation into the formation mechanism of eggshell gloss and to identify potential genes. The eggshell gloss of 300-day-old Rhode Island Red hens was measured from three aspects. Uterine tissues of the selected HG and LG (n = 5) hens were collected for RNA-seq. Blood samples were also collected for whole-genome resequencing (WGRS). RNA-seq analysis showed that 150 differentially expressed genes (DEGs) were identified in the uterine tissues of HG and LG hens. These DEGs were mainly enriched in the calcium signaling pathway and the neuroactive ligand-receptor interaction pathway. Importantly, these two pathways were also significantly enriched in the WGRS analysis results. Further joint analysis of WGRS and RNA-seq data revealed that 5-hydroxytryptamine receptor 1F (HTR1F), zinc finger protein 536 (ZNF536), NEDD8 ubiquitin-like modifier (NEDD8), nerve growth factor (NGF) and calmodulin 1 (CALM1) are potential candidate genes for eggshell gloss. In summary, our research provides a reference for the study of eggshell gloss and lays a foundation for improving egg glossiness in layer breeding.

7.
J Cancer Res Clin Oncol ; 150(3): 141, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504026

RESUMO

PURPOSE: The purpose of the current investigation is to compare the efficacy of different diffusion models and diffusion kurtosis imaging (DKI) in differentiating stage IA endometrial carcinoma (IAEC) from benign endometrial lesions (BELs). METHODS: Patients with IAEC, endometrial hyperplasia (EH), or a thickened endometrium confirmed between May 2016 and August 2022 were retrospectively enrolled. All of the patients underwent a preoperative pelvic magnetic resonance imaging (MRI) examination. The apparent diffusion coefficient (ADC) from the mono-exponential model, pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f) from the bi-exponential model, distributed diffusion coefficient (DDC), water molecular diffusion heterogeneity index from the stretched-exponential model, diffusion coefficient (Dk) and diffusion kurtosis (K) from the DKI model were calculated. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic efficiency. RESULTS: A total of 90 patients with IAEC and 91 patients with BELs were enrolled. The values of ADC, D, DDC and Dk were significantly lower and D* and K were significantly higher in cases of IAEC (p < 0.05). Multivariate analysis showed that K was the only predictor. The area under the ROC curve of K was 0.864, significantly higher compared with the ADC (0.601), D (0.811), D* (0.638), DDC (0.743) and Dk (0.675). The sensitivity, specificity and accuracy of K were 78.89%, 85.71% and 80.66%, respectively. CONCLUSION: Advanced diffusion-weighted imaging models have good performance for differentiating IAEC from EH and endometrial thickening. Among all of the diffusion parameters, K showed the best performance and was the only independent predictor. Diffusion kurtosis imaging was defined as the most valuable model in the current context.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias do Endométrio , Feminino , Humanos , Sensibilidade e Especificidade , Estudos Retrospectivos , Curva ROC , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias do Endométrio/diagnóstico por imagem
8.
Int J Biol Macromol ; 264(Pt 1): 130409, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417750

RESUMO

Flame retardants containing biomass receive growing interest in environmental friendliness and sustainability but usually face the low flame-retardant efficiency and deterioration on mechanical property of matrix. Herein, a calcium gluconate-based flame retardant (CG@APP) was chemically prepared using calcium gluconate (CG) and ammonium polyphosphate (APP) via ion exchange reaction, and enabled the excellent fire safety and mechanical enhancement for epoxy resin (EP). The resulted EP composites containing 6 wt% CG@APP (EP/CG@APP6) exhibited V-0 ratings in UL-94 test. Furthermore, with respect to EP/APP6, the peak of heat release rate (pHRR) and peak of smoke production rate (pSPR) of EP/CG@APP6 decreased by 70.5 % and 50.0 %, respectively. The well synergistic flame-retardant mechanism of CG@APP between gaseous and solid phases was revealed to generate denser and more continuous charring residuals, which could do well work on insulation for heat transfer and fuel diffusion. In addition, the shell rich in hydroxyl group and Ca2+ on the surface of CG@APP well enhanced the interface compatibility through the hydrogen bond and coordinated bond, thus the tensile strength, flexural strength and impact strength of EP/CG@APP6 increased by 18.2 %, 4.5 % and 9.1 % compared with pure EP, respectively. This work provided a simple and sustainable way to construct excellent fire-safety composites.


Assuntos
Resinas Epóxi , Retardadores de Chama , Gluconato de Cálcio , Biomassa , Difusão , Polifosfatos
9.
Proc Natl Acad Sci U S A ; 121(7): e2307150121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315842

RESUMO

Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcription initiation and is essential for maintaining gene silencing at heterochromatic loci. Inhibition of CDK9 increases sensitivity to immunotherapy, but the underlying mechanism remains unclear. We now report that RNF20 stabilizes LSD1 via K29-mediated ubiquitination, which is dependent on CDK9-mediated phosphorylation. This CDK9- and RNF20-dependent LSD1 stabilization is necessary for the demethylation of histone H3K4, then subsequent repression of endogenous retrovirus, and an interferon response, leading to epigenetic immunosuppression. Moreover, we found that loss of RNF20 sensitizes cancer cells to the immune checkpoint inhibitor anti-PD-1 in vivo and that this effect can be rescued by the expression of ectopic LSD1. Our findings are supported by the observation that RNF20 levels correlate with LSD1 levels in human breast cancer specimens. This study sheds light on the role of RNF20 in CDK9-dependent LSD1 stabilization, which is crucial for epigenetic silencing and immunosuppression. Our findings explore the potential importance of targeting the CDK9-RNF20-LSD1 axis in the development of new cancer therapies.


Assuntos
Quinase 9 Dependente de Ciclina , Histona Desmetilases , Tolerância Imunológica , Ubiquitina-Proteína Ligases , Humanos , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Epigênese Genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligases/genética
10.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339108

RESUMO

We developed the Stem Cell Educator therapy among multiple clinical trials based on the immune modulations of multipotent cord blood-derived stem cells (CB-SCs) on different compartments of immune cells, such as T cells and monocytes/macrophages, in type 1 diabetes and other autoimmune diseases. However, the effects of CB-SCs on the B cells remained unclear. To better understand the molecular mechanisms underlying the immune education of CB-SCs, we explored the modulations of CB-SCs on human B cells. CB-SCs were isolated from human cord blood units and confirmed by flow cytometry with different markers for their purity. B cells were purified by using anti-CD19 immunomagnetic beads from human peripheral blood mononuclear cells (PBMCs). Next, the activated B cells were treated in the presence or absence of coculture with CB-SCs for 7 days before undergoing flow cytometry analysis of phenotypic changes with different markers. Reverse transcription-polymerase chain reaction (RT-PCR) was utilized to evaluate the levels of galectin expressions on CB-SCs with or without treatment of activated B cells in order to find the key galectin that was contributing to the B-cell modulation. Flow cytometry demonstrated that the proliferation of activated B cells was markedly suppressed in the presence of CB-SCs, leading to the downregulation of immunoglobulin production from the activated B cells. Phenotypic analysis revealed that treatment with CB-SCs increased the percentage of IgD+CD27- naïve B cells, but decreased the percentage of IgD-CD27+ switched B cells. The transwell assay showed that the immune suppression of CB-SCs on B cells was dependent on the galectin-9 molecule, as confirmed by the blocking experiment with the anti-galectin-9 monoclonal antibody. Mechanistic studies demonstrated that both calcium levels of cytoplasm and mitochondria were downregulated after the treatment with CB-SCs, causing the decline in mitochondrial membrane potential in the activated B cells. Western blot exhibited that the levels of phosphorylated Akt and Erk1/2 signaling proteins in the activated B cells were also markedly reduced in the presence of CB-SCs. CB-SCs displayed multiple immune modulations on B cells through the galectin-9-mediated mechanism and calcium flux/Akt/Erk1/2 signaling pathways. The data advance our current understanding of the molecular mechanisms underlying the Stem Cell Educator therapy to treat autoimmune diseases in clinics.


Assuntos
Doenças Autoimunes , Leucócitos Mononucleares , Humanos , Sangue Fetal , Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Autoimunes/metabolismo , Células-Tronco/metabolismo , Galectinas/metabolismo
12.
Nat Commun ; 15(1): 449, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200023

RESUMO

Anxiety-associated symptoms following acute stress usually become extinct gradually within a period of time. However, the mechanisms underlying how individuals cope with stress to achieve the extinction of anxiety are not clear. Here we show that acute restraint stress causes an increase in the activity of GABAergic neurons in the CeA (GABACeA) in male mice, resulting in anxiety-like behaviors within 12 hours; meanwhile, elevated GABACeA neuronal CX3CL1 secretion via MST4 (mammalian sterile-20-like kinase 4)-NF-κB-CX3CL1 signaling consequently activates microglia in the CeA. Activated microglia in turn inhibit GABACeA neuronal activity via the engulfment of their dendritic spines, ultimately leading to the extinction of anxiety-like behaviors induced by restraint stress. These findings reveal a dynamic molecular and cellular mechanism in which microglia drive a negative feedback to inhibit GABACeA neuronal activity, thus facilitating maintenance of brain homeostasis in response to acute stress.


Assuntos
Ansiedade , Microglia , Masculino , Animais , Camundongos , Transtornos de Ansiedade , Macrófagos , Ácido gama-Aminobutírico , Mamíferos
13.
Sensors (Basel) ; 24(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257571

RESUMO

For vehicle positioning applications in Intelligent Transportation Systems (ITS), lane-level or even more precise localization is desired in some typical urban scenarios. With the rapid development of wireless positioning technologies, ultrawide bandwidth (UWB) has stood out and become a prominent approach for high-precision positioning. However, in traffic scenarios, the UWB-based positioning method may deteriorate because of not-line-of-sight (NLOS) propagation, multipath effect and other external interference. To overcome these problems, in this paper, a fusion strategy utilizing UWB and onboard sensors is developed to achieve reliable and precise vehicle positioning. It is a two-step approach, which includes the preprocessing of UWB raw measurements and the global estimation of vehicle position. Firstly, an ARIMA-GARCH model to address the NLOS problem of UWB at vehicular traffic scenarios is developed, and then the NLOS of UWB can be detected and corrected efficiently. Further, an adaptive IMM algorithm is developed to realize global fusion. Compared with traditional IMM, the proposed AIMM is capable of adjusting the model probabilities to make them better matching for current driving conditions, then positioning accuracy can be improved. Finally, the method is validated through experiments. Field test results verify the effectiveness and feasibility of the proposed strategy.

14.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276572

RESUMO

Selective supported catalysts have emerged as a promising approach to enhance carrier separation, particularly in the realm of photocatalytic hydrogen production. Herein, a pioneering exploration involves the loading of PdS and Pt catalyst onto g-C3N4 nanosheets to construct g-C3N4@PdS@Pt nanocomposites. The photocatalytic activity of nanocomposites was evaluated under visible light and full spectrum irradiation. The results show that g-C3N4@PdS@Pt nanocomposites exhibit excellent properties. Under visible light irradiation, these nanocomposites exhibit a remarkable production rate of 1289 µmol·g-1·h-1, marking a staggering 60-fold increase compared to g-C3N4@Pt (20.9 µmol·g-1·h-1). Furthermore, when subjected to full spectrum irradiation, the hydrogen production efficiency of g-C3N4@PdS@Pt-3 nanocomposites reaches an impressive 11,438 µmol·g-1·h-1, representing an eightfold enhancement compared to g-C3N4@Pt (1452 µmol·g-1·h-1) under identical conditions. Detailed investigations into the microstructure and optical properties of g-C3N4@PdS catalysts were conducted, shedding light on the mechanisms governing photocatalytic hydrogen production. This study offers valuable insights into the potential of these nanocomposites and their pivotal role in advancing photocatalysis.

15.
BMC Cancer ; 24(1): 13, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166846

RESUMO

PURPOSE: The residual cancer burden index (RCB) was proposed as a response evaluation criterion in breast cancer patients treated with Neoadjuvant Chemotherapy (NAC). This study evaluated the relevance of RCB with replase-free survival (RFS). METHODS: The clinical data of 254 breast cancer patients who received NAC between 2016 and 2020 were retrospectively collected. The relationship between clinicopathologic factors and RFS was evaluated using Cox proportional hazards regression models. RFS estimates were determined by Kaplan-Meier(K-M) analysis and compared using the log-rank test. Multivariate logistic regression analysis was used to evaluate the risk factors associated with RCB. Receiver operating characteristic (ROC) curves showed the potential of the RCB and MP grading systems as biomarkers for RFS. RESULTS: At a median follow-up of 52 months, 59 patients(23.23%) developed relapse. Multivariate Cox regression showed that older age (P = 0.022), high Pathologic T stage after NAC (P = 0.023) and a high RCB score(P = 0.003) were risk factors for relapse. The outcomes of the multivariate logistic analysis indicated that RCB 0 (pathologic complete response [pCR]) was associated with HER2-positive patients (P = 0.002) and triple-negative breast cancer (TNBC) patients (P = 0.013). In addition, the RCB and MP scoring systems served as prognostic markers for patients who received NAC, and their area under curves (AUCs) were 0.691 and 0.342, respectively. CONCLUSION: These data suggest that RCB can be equally applied to predict RFS in Chinese patients with NAC. The application of RCB may help guide the selection of treatment strategies.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/patologia , Prognóstico , Terapia Neoadjuvante , Neoplasia Residual/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Recidiva , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
16.
Chin J Traumatol ; 27(2): 114-120, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37311687

RESUMO

PURPOSE: Ischemia and hypoxia are the main factors limiting limb replantation and transplantation. Static cold storage (SCS), a common preservation method for tissues and organs, can only prolong limb ischemia time to 4 - 6 h. The normothermic machine perfusion (NMP) is a promising method for the preservation of tissues and organs, which can extend the preservation time in vitro by providing continuous oxygen and nutrients. This study aimed to evaluate the difference in the efficacy of the 2 limb preservation methods. METHODS: The 6 forelimbs from beagle dogs were divided into 2 groups. In the SCS group (n = 3), the limbs were preserved in a sterile refrigerator at 4 °C for 24 h, and in the NMP group (n = 3), the perfusate prepared with autologous blood was used for the oxygenated machine perfusion at physiological temperature for 24 h, and the solution was changed every 6 h. The effects of limb storage were evaluated by weight gain, perfusate biochemical analysis, enzyme-linked immunosorbent assay, and histological analysis. All statistical analyses and graphs were performed using GraphPad Prism 9.0 one-way or two-way analysis of variance. The p value of less than 0.05 was considered to indicate statistical significance. RESULTS: In the NMP group, the weight gained percentage was 11.72% ± 4.06%; the hypoxia-inducible factor-1α contents showed no significant changes; the shape of muscle fibers was normal; the gap between muscle fibers slightly increased, showing the intercellular distance of (30.19 ± 2.83) µm; and the vascular α-smooth muscle actin (α-SMA) contents were lower than those in the normal blood vessels. The creatine kinase level in the perfusate of the NMP group increased from the beginning of perfusion, decreased after each perfusate change, and remained stable at the end of perfusion showing a peak level of 4097.6 U/L. The lactate dehydrogenase level of the NMP group increased near the end of perfusion and reached the peak level of 374.4 U/L. In the SCS group, the percentage of weight gain was 0.18% ± 0.10%, and the contents of hypoxia-inducible factor-1α increased gradually and reached the maximum level of (164.85 ± 20.75) pg/mL at the end of the experiment. The muscle fibers lost their normal shape and the gap between muscle fibers increased, showing an intercellular distance of (41.66 ± 5.38) µm. The contents of vascular α-SMA were much lower in the SCS group as compared to normal blood vessels. CONCLUSIONS: NMP caused lesser muscle damage and contained more vascular α-SMA as compared to SCS. This study demonstrated that NMP of the amputated limb with perfusate solution based on autologous blood could maintain the physiological activities of the limb for at least 24 h.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Preservação de Órgãos , Animais , Cães , Temperatura , Preservação de Órgãos/métodos , Perfusão/métodos , Extremidade Superior , Membro Anterior , Aumento de Peso , Fígado
17.
J Proteomics ; 292: 105055, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38040194

RESUMO

Cisplatin (DDP) is a commonly used chemotherapeutic agent for triple negative breast cancer (TNBC), but its efficacy can be limited by chemoresistance. This study aimed to explore the functional mechanism of SR-rich splicing factor 1 (SRSF1) in DDP chemosensitivity of TNBC cells. Levels of SRSF1, circular RNA septin 9 (circSEPT9), and GTP cyclohydrolase-1 (GCH1) in TNBC cells, DDP-resistant cells, and normal cells were determined. Cell viability, half-maximal inhibitory concentration (IC50) value, and proliferation were evaluated. Ferroptosis was determined by assay kits (ferric ion/ROS/MDA/GSH) and Western blot assay (SLC7A11/ACSL4). The genetic binding was analyzed by RNA immunoprecipitation and RNA pull-down assays. SRSF1, circSEPT9, and GCH1 were upregulated in TNBC cells. SRSF1 downregulation reduced IC50 to DDP of parent and drug-resistant TNBC cells and inhibited cell viability and proliferation, meanwhile, the downregulation reduced GSH/SLC7A11 levels while elevated ferric ion/ROS/MDA/ACSL4 levels, promoting ferroptosis. SRSF1 bound to and upregulated circSEPT9 and circSEPT9 blocked the ubiquitination of GCH1, thereby increasing GCH1 protein level. Overexpression of circSEPT9 and GCH1 attenuated the DDP chemosensitivity of TNBC cells by inhibiting ferroptosis. This study is the first to report the role of SRSF1 inhibitors combined with chemotherapy in TNBC, which provides a promising strategy for the treatment of TNBC. SIGNIFICANCE: Cisplatin (DDP) is a commonly used chemotherapeutic agent for triple negative breast cancer (TNBC), but its efficacy can be limited by chemoresistance. This study aimed to unravel the molecular mechanism of SR-rich splicing factor 1 (SRSF1) in DDP chemosensitivity of TNBC cells.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Cisplatino/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , RNA Circular/farmacologia , GTP Cicloidrolase/farmacologia , Espécies Reativas de Oxigênio , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Fatores de Processamento de RNA , Proliferação de Células , Fatores de Processamento de Serina-Arginina
18.
Ecotoxicol Environ Saf ; 269: 115788, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056118

RESUMO

The contamination of arable land with heavy metals, such as Cd, is a serious concern worldwide. Intercropping with Cd accumulators can be used for efficient safe crop production and phytoremediation of Cd-contaminated soil. However, the effect of intercropping on Cd uptake by main crops and accumulators varies among plant combinations. Rhizosphere interaction may mediate Cd uptake by intercropped plants, but the mechanism is unclear. Thus, in the present study, we aimed to examine the effect of rhizosphere interaction on Cd uptake by intercropping rice (Oryza sativa L.) with mugwort (Artemisia argyi Levl. et Vant.) in Cd-contaminated paddy soil. We grew O. sativa and A. argyi in pots designed to allow different levels of interaction: complete root interaction (no barrier), partial root interaction (nylon mesh barrier), and no root interaction (plastic film barrier). Our results indicated that both complete and partial root interaction increased the shoot and root mass of A. argyi, but did not decrease the shoot, root, and grain mass of O. sativa. Interspecific root interaction significantly increased the Cd content in the shoots, roots, and grains of O. sativa and the shoots of A. argyi. Increased content of total organic acids in the rhizosphere, which increased the content of available Cd, was a possible mechanism of increased Cd uptake in both plants under interspecific root interaction. Our findings demonstrate that an intercropping system can extract more Cd from contaminated soil than a monocropping system of either A. argyi or O. sativa. However, the intercropping system did not facilitate safe crop production because it substantially increased grain Cd content in O. sativa.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo , Raízes de Plantas/química , Grão Comestível/química , Biodegradação Ambiental , Poluentes do Solo/análise
19.
BMC Med ; 21(1): 493, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087296

RESUMO

BACKGROUND: The pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) of breast cancer is closely related to a better prognosis. However, there are no reliable indicators to accurately identify which patients will achieve pCR before surgery, and a model for predicting pCR to NAC is required. METHODS: A total of 269 breast cancer patients in Shandong Cancer Hospital and Liaocheng People's Hospital receiving anthracycline and taxane-based NAC were prospectively enrolled. Expression profiling using a 457 cancer-related gene sequencing panel (DNA sequencing) covering genes recurrently mutated in breast cancer was carried out on 243 formalin-fixed paraffin-embedded tumor biopsies samples before NAC from 243 patients. The unique personalized panel of nine individual somatic mutation genes from the constructed model was used to detect and analyze ctDNA on 216 blood samples. Blood samples were collected at indicated time points including before chemotherapy initiation, after the 1st NAC and before the 2nd NAC cycle, during intermediate evaluation, and prior to surgery. In this study, we characterized the value of gene profile mutation and circulating tumor DNA (ctDNA) in combination with clinical characteristics in the prediction of pCR before surgery and investigated the prognostic prediction. The median follow-up time for survival analysis was 898 days. RESULTS: Firstly, we constructed a predictive NAC response model including five single nucleotide variant (SNV) mutations (TP53, SETBP1, PIK3CA, NOTCH4 and MSH2) and four copy number variation (CNV) mutations (FOXP1-gain, EGFR-gain, IL7R-gain, and NFKB1A-gain) in the breast tumor, combined with three clinical factors (luminal A, Her2 and Ki67 status). The tumor prediction model showed good discrimination of chemotherapy sensitivity for pCR and non-pCR with an AUC of 0.871 (95% CI, 0.797-0.927) in the training set, 0.771 (95% CI, 0.649-0.883) in the test set, and 0.726 (95% CI, 0.556-0.865) in an extra test set. This tumor prediction model can also effectively predict the prognosis of disease-free survival (DFS) with an AUC of 0.749 at 1 year and 0.830 at 3 years. We further screened the genes from the tumor prediction model to establish a unique personalized panel consisting of 9 individual somatic mutation genes to detect and analyze ctDNA. It was found that ctDNA positivity decreased with the passage of time during NAC, and ctDNA status can predict NAC response and metastasis recurrence. Finally, we constructed the chemotherapy prediction model combined with the tumor prediction model and pretreatment ctDNA levels, which has a better prediction effect of pCR with the AUC value of 0.961. CONCLUSIONS: In this study, we established a chemotherapy predictive model with a non-invasive tool that is built based on genomic features, ctDNA status, as well as clinical characteristics for predicting pCR to recognize the responders and non-responders to NAC, and also predicting prognosis for DFS in breast cancer. Adding pretreatment ctDNA levels to a model containing gene profile mutation and clinical characteristics significantly improves stratification over the clinical variables alone.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Terapia Neoadjuvante , Variações do Número de Cópias de DNA , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Prognóstico , Medição de Risco , Proteínas Repressoras/genética , Proteínas Repressoras/uso terapêutico , Fatores de Transcrição Forkhead
20.
Toxics ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888676

RESUMO

Shiyang River Watershed is an important ecological barrier and agricultural production area in Northwest China, and the study of soil heavy metal content, distribution, and sources is important for agricultural product safety, pollution control, and ecosystem health. In this paper, 140 soil samples were collected from 28 stations to assess the level of heavy metal (Arsenic (As), Copper (Cu), Lead (Pb), Cadmium (Cd), Chromium (Cr), Mercury (Hg), Nickel (Ni), Zinc (Zn)) contamination, pollutant sources and influencing factors of soil in Shiyang River Watershed through determination of the metal contents and statistical analysis. The results indicated that the soils in the study area are typical saline soils in arid zones. The enrichment factors (EF) of As, Cr, Cu, Ni, Zn, and Pb indicate no contamination, and the EFs of Cd and Hg suggested minor contamination. Although the concentrations of Cd and Hg in soil are lower than others, they are more biotoxic and exhibit a moderate-high ecological risk. The index of geoaccumulation (Igeo) values reflect that most of the stations, especially the three groups of samples from depths of 10-20 cm, 20-40 cm, and 40-80 cm, are below the contamination threshold for all heavy metals. The chemical speciation of heavy metals, principal component analysis, and correlation analysis showed that Cr, Cu, Pb, Cd, Ni, and Zn mainly come from the natural accumulation upon weathering of soil-forming matrices. Hg and As mainly come from anthropogenic contributions. The effect of agricultural crop cultivation on soil heavy metal contamination is mainly through farm irrigation and crop-soil interactions, which accelerate the release of heavy metals through the weathering of soil-forming parent material and irrigation, which transports the heavy metals below the surface. The results of this study can provide a scientific basis for the involved authorities to formulate reasonable policies on environmental protection and pollution control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...