Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 72(10): 3582-3596, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33677565

RESUMO

Maize is a model plant species often used for genetics and genomics research because of its genetic diversity. There are prominent morphological, genetic, and epigenetic variations between tropical and temperate maize lines. However, the genome-wide chromatin conformations of these two maize types remain unexplored. We applied a Hi-C approach to compare the genome-wide chromatin interactions between temperate inbred line D132 and tropical line CML288. A reconstructed maize three-dimensional genome model revealed the spatial segregation of the global A and B compartments. The A compartments contain enriched genes and active epigenome marks, whereas the B compartments are gene-poor, transcriptionally silent chromatin regions. Whole-genome analyses indicated that the global A compartment content of CML288 was 3.12% lower than that of D132. Additionally, global and A/B sub-compartments were associated with differential gene expression and epigenetic changes between two inbred lines. About 25.3% of topologically associating domains (TADs) were determined to be associated with complex domain-level modifications that induced transcriptional changes, indicative of a large-scale reorganization of chromatin structures between the inbred maize lines. Furthermore, differences in chromatin interactions between the two lines correlated with epigenetic changes. These findings provide a solid foundation for the wider plant community to further investigate the genome-wide chromatin structures in other plant species.


Assuntos
Cromatina , Zea mays , Epigênese Genética , Genoma , Genômica , Zea mays/genética
2.
PLoS One ; 14(1): e0211623, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699185

RESUMO

The circadian clock regulates numerous biological processes in plants, especially development and stress responses. CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) is one of the core components of the day-night rhythm response and is reportedly associated with ambient temperature in Arabidopsis thaliana. However, it remains unknown if alternative splicing of ZmCCA1 is modulated by external stress in maize, such as drought stress and photoperiod. Here, we identified three ZmCCA1 splice variants in the tropical maize line CML288, which are predicted to encode three different protein isoforms, i.e., ZmCCA1.1, ZmCCA1.2, and ZmCCA1.3, which all retain the MYB domain. In maize, the expression levels of ZmCCA1 splice variants were influenced by photoperiod, tissue type, and drought stress. In transgenic A. thaliana, ZmCCA1.1 may be more effective than ZmCCA1.3 in increasing drought tolerance while ZmCCA1.2 may have only a small effect on tolerance to drought stress. Additionally, although CCA1 genes have been found in many plant species, alternative CCA1 splicing events are known to occur in species-specific ways. Our study provides new sight to explore the function of ZmCCA1 splice variants' response to abiotic stress, and clarify the linkage between circadian clock and environmental stress in maize.


Assuntos
Processamento Alternativo , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Estresse Fisiológico , Zea mays/genética , Arabidopsis/crescimento & desenvolvimento , Fotoperíodo , Proteínas de Plantas/metabolismo , Zea mays/crescimento & desenvolvimento
3.
BMC Plant Biol ; 18(1): 290, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463514

RESUMO

BACKGROUND: Photoperiod-sensitivity is a critical endogenous regulatory mechanism for plant growth and development under specific environmental conditions, while phosphate and sucrose signaling processes play key roles in cell growth and organ initiation. MicroRNA399 is phosphate-responsive, but, whether it has roles in other metabolic processes remains unknown. RESULTS: MicroRNA399 was determined to be sucrose-responsive through a microRNA array assay. High levels of sucrose inhibited the accumulation of microRNA399 family under phosphate starvation conditions in Arabidopsis thaliana. Similarly, exogenous sucrose supplementation also reduced microRNA399 expression in maize at developmental transition stages. RNA sequencing of a near-isogenic line(photoperiod-sensitive) line and its recurrent parent Huangzao4, a photoperiod-insensitive line, was conducted at various developmental stages. Members of microRNA399 family were down-regulated under long-day conditions in the photoperiod-sensitive near-isogenic line that accumulated more sucrose in vivo compared with the control line Huangzao4. CONCLUSION: MicroRNA399s may play central roles in the integration of sucrose sensing and photoperiodic responses under long day conditions in maize.


Assuntos
Arabidopsis/fisiologia , RNA de Plantas/fisiologia , Sacarose/metabolismo , Zea mays/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Homeostase/genética , MicroRNAs/biossíntese , Fotoperíodo , Folhas de Planta/metabolismo , RNA de Plantas/biossíntese , Transdução de Sinais , Zea mays/genética , Zea mays/crescimento & desenvolvimento
4.
Amino Acids ; 50(1): 149-161, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030729

RESUMO

Maize (Zea mays L.) is a typical short-day plant that is produced as an important food product and industrial material. The photoperiod is one of the most important evolutionary mechanisms enabling the adaptation of plant developmental phases to changes in climate conditions. There are differences in the photoperiod sensitivity of maize inbred lines from tropical to temperate regions. In this study, to identify the maize proteins responsive to a long photoperiod (LP), the photoperiod-insensitive inbred line HZ4 and its near-isogenic line H496, which is sensitive to LP conditions, were analyzed under long-day conditions using isobaric tags for relative and absolute quantitation. We identified 5259 proteins in maize leaves exposed to the LP condition between the vegetative and reproductive stages. These proteins included 579 and 576 differentially accumulated proteins in H496 and HZ4 leaves, respectively. The differentially accumulated proteins (e.g., membrane, defense, and energy- and ribosome-related proteins) exhibited the opposite trends in HZ4 and H496 plants during the transition from the vegetative stage to the reproductive stage. These results suggest that the photoperiod-associated fragment in H496 plants considerably influences various proteins to respond to the photoperiod sensitivity. Overall, our data provide new insights into the effects of long-day treatments on the maize proteome, and may be useful for the development of new germplasm.


Assuntos
Fotoperíodo , Proteoma , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Cromatografia Líquida de Alta Pressão , Ambiente Controlado , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Espectrometria de Massas por Ionização por Electrospray
5.
PLoS One ; 12(10): e0185838, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28973044

RESUMO

In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Polinização/genética , Transcriptoma , Zea mays/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Fotossíntese/genética , Zea mays/metabolismo
6.
BMC Plant Biol ; 16(1): 239, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809780

RESUMO

BACKGROUND: Photoperiodism refers to the ability of plants to measure day length to determine the season. This ability enables plants to coordinate internal biological activities with external changes to ensure normal growth. However, the influence of the photoperiod on maize flowering and stress responses under long-day (LD) conditions has not been analyzed by comparative transcriptome sequencing. The ZmCCT gene was previously identified as a homolog of the rice photoperiod response regulator Ghd7, and associated with the major quantitative trait locus (QTL) responsible for Gibberella stalk rot resistance in maize. However, its regulatory mechanism has not been characterized. RESULTS: We mapped the ZmCCT-associated QTL (ZmCCT-AQ), which is approximately 130 kb long and regulates photoperiod responses and resistance to Gibberella stalk rot and drought in maize. To investigate the effects of ZmCCT-AQ under LD conditions, the transcriptomes of the photoperiod-insensitive inbred line Huangzao4 (HZ4) and its near-isogenic line (HZ4-NIL) containing ZmCCT-AQ were sequenced. A set of genes identified by RNA-seq exhibited higher basal expression levels in HZ4-NIL than in HZ4. These genes were associated with responses to circadian rhythm changes and biotic and abiotic stresses. The differentially expressed genes in the introgressed regions of HZ4-NIL conferred higher drought and heat tolerance, and stronger disease resistance relative to HZ4. Co-expression analysis and the diurnal expression rhythms of genes related to stress responses suggested that ZmCCT and one of the circadian clock core genes, ZmCCA1, are important nodes linking the photoperiod to stress tolerance responses under LD conditions. CONCLUSION: Our study revealed that the photoperiod influences flowering and stress responses under LD conditions. Additionally, ZmCCT and ZmCCA1 are important functional links between the circadian clock and stress tolerance. The establishment of this particular molecular link has uncovered a new relationship between plant photoperiodism and stress responses.


Assuntos
Flores/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Estresse Fisiológico/genética , Zea mays/genética , Zea mays/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fotoperíodo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Genome Announc ; 4(5)2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27587804

RESUMO

Mycobacterium avium is an important pathogenic bacterium in birds and has never, to our knowledge, reported to be isolated from domestic ducks. We present here the complete genome sequence of a virulent strain of Mycobacterium avium, isolated from domestic Pekin ducks for the first time, which was determined by PacBio single-molecule real-time technology.

8.
Avian Dis ; 60(3): 677-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27610730

RESUMO

Avian tuberculosis is a contagious disease affecting various domestic and wild bird species, and is caused by Mycobacterium avium . It is reported extremely rarely in commercial poultry flocks and has not been reported in commercial domestic ducks to date, with domestic ducks reported to be moderately resistant to M. avium infection. Here, we report the outbreak of avian tuberculosis in commercial Pekin duck ( Anas platyrhynchos domestica) flocks. Postmortem and histopathologic findings included nodules presenting in the visceral organs of ducks, and granulomas with central caseous necrosis surrounded by infiltrating lymphocytes. The M. avium pathogen was isolated and further identified by Ziehl-Neelsen staining and PCR based on insert sequence IS901 and the 16S rRNA gene. We highlight that avian tuberculosis not only has economic significance for the duck industry, but also presents a potential zoonotic hazard to humans.


Assuntos
Surtos de Doenças/veterinária , Patos , Mycobacterium avium/isolamento & purificação , Doenças das Aves Domésticas/epidemiologia , Tuberculose Aviária/epidemiologia , Animais , China/epidemiologia , Elementos de DNA Transponíveis/genética , Mycobacterium avium/classificação , Mycobacterium avium/genética , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/veterinária , Tuberculose Aviária/microbiologia , Tuberculose Aviária/patologia
9.
BMC Genomics ; 17: 689, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27577199

RESUMO

BACKGROUND: Riemerella anatipestifer infection is a contagious disease that has resulted in major economic losses in the duck industry worldwide. This study attempted to characterize CRISPR-Cas systems in the disease-causing agent, Riemerella anatipestifer (R. anatipestifer). The CRISPR-Cas system provides adaptive immunity against foreign genetic elements in prokaryotes and CRISPR-cas loci extensively exist in the genomes of archaea and bacteria. However, the structure characteristics of R. anatipestifer CRISPR-Cas systems remains to be elucidated due to the limited availability of genomic data. RESULTS: To identify the structure and components associated with CRISPR-Cas systems in R. anatipestifer, we performed comparative genomic analysis of CRISPR-Cas systems in 25 R. anatipestifer strains using high-throughput sequencing. The results showed that most of the R. anatipestifer strains (20/25) that were analyzed have two CRISPR loci (CRISPR1 and CRISPR2). CRISPR1 was shown to be flanked on one side by cas genes, while CRISPR2 was designated as an orphan. The other analyzed strains harbored only one locus, either CRISPR1 or CRISPR2. The length and content of consensus direct repeat sequences, as well as the length of spacer sequences associated with the two loci, differed from each other. Only three cas genes (cas1, cas2 and cas9) were located upstream of CRISPR1. CRISPR1 was also shown to be flanked by a 107 bp-long putative leader sequence and a 16 nt-long anti-repeat sequence. Combined with analysis of spacer organization similarity and phylogenetic tree of the R. anatipestifer strains, CRISPR arrays can be divided into different subgroups. The diversity of spacer organization was observed in the same subgroup. In general, spacer organization in CRISPR1 was more divergent than that in CRISPR2. Additionally, only 8 % of spacers (13/153) were homologous with phage or plasmid sequences. The cas operon flanking CRISPR1 was observed to be relatively conserved based on multiple sequence alignments of Cas amino acid sequences. The phylogenetic analysis associated with Cas9 showed Cas9 sequence from R. anatipestifer was closely related to that of Bacteroides fragilis and formed part of the subtype II-C subcluster. CONCLUSIONS: Our data revealed for the first time the structural features of R. anatipestifer CRISPR-Cas systems. The illumination of structural features of CRISPR-Cas system may assist in studying the specific mechanism associated with CRISPR-mediated adaptive immunity and other biological functions in R. anatipestifer.


Assuntos
Sistemas CRISPR-Cas/genética , Filogenia , Riemerella/genética , Hibridização Genômica Comparativa , Variação Genética , Genômica , Plasmídeos/genética , Riemerella/patogenicidade
10.
Genome Announc ; 4(3)2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27151800

RESUMO

Riemerella anatipestifer is an important pathogenic bacterium in waterfowl and other avian species. We present here the genome sequence of R. anatipestifer RCAD0122, a multidrug-resistant strain isolated from infected ducks. The isolate contains at least nine types of antibiotic resistance-associated genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA