Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
ACS Omega ; 9(5): 5772-5779, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343965

RESUMO

The impact of fracturing on coal seams includes not only mechanical alterations but also physical and chemical alterations. The coupling of these alterations plays an important role in the recovery of coalbed methane (CBM). 13C nuclear magnetic resonance (13C NMR), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and molecular models were conducted on coals with different degrees of fracturing to study the alterations in the coal structure during CBM stimulation. The 13C NMR results show that some aliphatic chains and oxygen-containing functional groups were shed, and some aliphatic rings were broken due to the effects of fracturing, which cause an increase in the relative content of aromatic carbon. The HRTEM and XRD results indicate that fracturing will result in a decrease in the interlayer spacing d002, an increase in the stacking height Lc, and a slight increase in the layer size La. Moreover, the orientation distribution in fractured coal was more intensive. The construction of molecular models also verified the variation of surface functional groups and interlayer spacing. Based on these analyses and molecular models, the alteration mechanism of functional groups and aromatic structures under fracturing was demonstrated. This study clarifies the alteration of the coal structure by fracturing and has important implications for the recovery of CBM.

2.
Int Immunopharmacol ; 126: 111297, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039718

RESUMO

OBJECTIVE AND DESIGN: We aimed to investigate the molecular mechanism underlying formaldehyde (FA)-induced congenital heart disease (CHD) using in vitro and in vivo models. MATERIALS AND SUBJECTS: Neonatal rat heart tissues and H9C2 cells were used for in vitro studies, while FA-exposed new-born rats were used for in vivo studies. TREATMENT: H9C2 cells were exposed to FA concentrations of 0, 50, 100 and 150 µM/mL for 24 h. METHODS: Whole transcriptome gene sequencing identified differentially expressed miRNAs in neonatal rat heart tissues, while Real-time quantitative PCR (RT-qPCR) assessed miR-871-3p and Megf8 expression. RNA pull-down and dual-luciferase reporter assays determined miR-871-3p and Megf8 relationships. Inflammatory cytokine expression was assessed by western blotting. A FA-induced CHD model was used to validate miR-871-3p regulatory effects in vivo. RESULTS: We identified 89 differentially expressed miRNAs, with 28 up-regulated and 61 down-regulated (fold change ≥ 2.0, P < 0.05). Inflammation (interleukin) and signalling pathways were found to control FA-induced cardiac dysplasia. miR-871-3p was upregulated in FA-exposed heart tissues, modulated inflammation, and directly targeted Megf8. In vivo experiments showed miR-871-3p knockdown inhibited FA-induced inflammation and CHD. CONCLUSION: We demonstrated miR-871-3p's role in FA-induced CHD by targeting Megf8, providing potential targets for CHD intervention and improved diagnosis and treatment strategies.


Assuntos
Formaldeído , Cardiopatias , Proteínas de Membrana , MicroRNAs , Animais , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Ratos , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/toxicidade , Modelos Animais de Doenças , Formaldeído/metabolismo , Formaldeído/toxicidade , Expressão Gênica , Técnicas de Silenciamento de Genes , Coração/efeitos dos fármacos , Coração/fisiopatologia , Cardiopatias/congênito , Cardiopatias/metabolismo , Cardiopatias/patologia , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley
3.
J Clin Psychol ; 80(3): 522-536, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098248

RESUMO

Little is known about encouraging help-seeking in non-English speaking settings and relatively little research has been directed to facilitate help-seeking among Chinese-speaking people. This study examined the effects of a multimedia intervention on barriers, attitudes, and intentions for seeking counseling in China. The multimedia intervention was informed by prior empirical research on models of help-seeking for counseling. A total of 200 participants were randomly assigned to one of the two conditions: (1) a help-seeking media-exposed intervention group and (2) a control group, who watched a hospital advertisement that was unrelated to mental health help-seeking. Results indicated that the intervention was effective at increasing both positive attitudes toward therapy and intentions to seek therapy. The intervention also improved participants' perceptions about treatment accessibility. This intervention is available and can be a resource for Chinese language populations (both within China and other countries), especially for immigrants, rural, and persons who might benefit from mental health treatments such as psychotherapy.


Assuntos
Multimídia , Aceitação pelo Paciente de Cuidados de Saúde , Humanos , Aceitação pelo Paciente de Cuidados de Saúde/psicologia , Saúde Mental , Estudantes/psicologia , Idioma
4.
Food Sci Nutr ; 11(7): 4038-4046, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37457198

RESUMO

With the global shortages of animal protein foods, mycoprotein as a low-cost alternative source of protein by its high-protein and low-fat content has become a development trend. Lentinula edodes (L. edodes) is a healthy food with high protein and low fiber. This work evaluated the nutritional value of L. edodes mycelia, and determined the composition and contents of fatty acids and amino acids. Eleven saturated fatty acids (SFAs) and 12 unsaturated fatty acids (UFAs) were detected in the mycelia of L. edodes. The UFA content accounted for 75.7% and 73.1% of the total fatty acid content in the mycelia of strains 18 and 18N44, respectively. Linoleic acid was the major polyunsaturated fatty acid (PUFA) in the mycelia, accounting for 91.0% and 86.3% of the UFAs, respectively. The mycelia of the two strains contained 17 types of amino acids, and the essential amino acids were sufficient (357.92 ± 0.42 and 398.38 ± 4.52 mg/g pro, respectively), both close to the WHO/FAO reference protein pattern value. The most abundant essential amino acid was Lys, and the limiting amino acids were Met + Cys and Ile, respectively. The SRC values in the mycelia of the two strains were 68.07 and 54.86, and the EAAI values were 67.70 and 74.42, respectively, both being close to those of ovalbumin. It is concluded that L. edodes mycelia are rich in easily absorbed high-quality proteins and PUFAs, and can be used as a source for meat analog required by vegetarians. This study provides a scientific basis for the further utilization of mycelial resources.

5.
Appl Microbiol Biotechnol ; 107(17): 5469-5489, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439832

RESUMO

Based on six offspring with different mitochondrial (M) and parental nuclear (N) genotypes, the multi-stage morphological characteristics and nuclear transcriptomes of Lentinula edodes were compared to investigate morphogenesis mechanisms during cultivation, the key reason for cultivar resistance to genotype changes, and regulation related to biparental role changes. Six offspring had specific transcriptomic data and morphological characteristics that were mainly regulated by the two parental nuclei, followed by the cytoplasm, at different growth stages. Importing a wild N genotype easily leads to failure or instability of fruiting; however, importing wild M genotypes may improve cultivars. Major facilitator superfamily (MFS) transporter genes encoding specific metabolites in spawns may play crucial roles in fruiting body formation. Pellets from submerged cultivation and spawns from sawdust substrate cultivation showed different carbon metabolic pathways, especially in secondary metabolism, degradation of lignin, cellulose and hemicellulose, and plasma membrane transport (mainly MFS). When the stage of small young pileus (SYP) was formed on the surface of the bag, the spawns inside were mainly involved in nutrient accumulation. Just broken pileus (JBP) showed a different expression of plasma membrane transporter genes related to intracellular material transport compared to SYP and showed different ribosomal proteins and cytochrome P450 functioning in protein biosynthesis and metabolism than near spreading pileus (NSP). Biparental roles mainly regulate offspring metabolism, growth, and morphogenesis by differentially expressing specific genes during different vegetative growth stages. Additionally, some genes encoding glycine-rich RNA-binding proteins, F-box, and folliculin-interacting protein repeat-containing proteins may be related to multi-stage morphogenesis. KEY POINTS: • Replacement of nuclear genotype is not suitable for cultivar breeding of L. edodes. • Some genes show a biparental role-divergent expression at mycelial growth stage. • Transcriptomic changes of some sawdust substrate cultivation stages have been elucidated.

6.
Cancer Biol Ther ; 24(1): 2198904, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37211864

RESUMO

Despite its low frequency, osteosarcoma is one of the deadliest malignancies in children and adolescents. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling activation and epithelial-to-mesenchymal transition (EMT) are critical issues during osteosarcoma development. This study found long intergenic non-protein coding RNA 1060 (LINC01060) to be an EMT-related long non-coding RNA (lncRNA) up-regulated in osteosarcoma; higher LINC01060 expression was linked to a worse prognosis in osteosarcoma patients. In vitro, knocking down LINC01060 significantly inhibits osteosarcoma cell malignant behaviors, including hyperproliferation, invasion, migration, and EMT. In vivo, LINC01060 knockdown inhibited tumor growth and metastasis, and suppressed PI3K and Akt phosphorylation. In osteosarcoma cells, Akt agonist SC79 exerted opposite effects to those of LINC01060 knockdown through the promotion of cell viability, cell migration, and cell invasion. Moreover, the Akt agonist SC79 partially eliminated LINC01060 knockdown effects on osteosarcoma cells, suggesting that LINC01060 exerts its effects through the PI3K/Akt signaling. Therefore, it is deduced that LINC01060 is overexpressed in osteosarcoma. In vitro, LINC01060 knockdown inhibits cancer cell malignant behaviors; in vivo, LINC01060 knockdown inhibits tumor development and metastasis. The PI3K/Akt signaling is involved in LINC01060 functions in osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Criança , Humanos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Osteossarcoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA não Traduzido/genética
7.
Front Bioeng Biotechnol ; 11: 1086106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959904

RESUMO

Ultraviolet lithography is a very promising technology used for the batch fabrication of biomedical microswimmers. However, creating microswimmers that can swim at low Reynolds number using biocompatible materials while retaining strong magnetic properties and excellent biomedical functionality is a great challenge. Most of the previously reported biomedical microswimmers possess either strong magnetic properties by using non-biocompatible nickel coating or good biocompatibility by using iron oxide particle-embedded hydrogel with weak magnetism, but not both. Alternatively, iron oxide nanoparticles can be coated on the surface of microswimmers to improve magnetic properties; however, this method limited the usability of the microswimmers' surfaces. To address these shortcomings, this work utilized an in situ synthesis technique to generate high magnetic content inside hydrogel-based achiral planar microswimmers while leaving their surfaces free to be functionalized for SERS detection. The hydrogel matrices of the magnetically actuated hydrogel-based microswimmers were first prepared by ultraviolet lithography. Then, the high concentration of iron oxide was achieved through multiple continuous in situ coprecipitation cycles. Finally, the SERS detection capability of magnetically actuated hydrogel-based microswimmers was enabled by uniformly growing silver nanoparticles on the surface of the microswimmers. In the motion control tests, the microswimmers showed a high swimming efficiency, high step-out frequency, and consistent synchronized motion. Furthermore, the magnetically actuated hydrogel-based microswimmers were able to improve the detection efficiency of analytes under magnetic guidance.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36752406

RESUMO

Cell delivery using magnetic microswimmers is a promising tool for targeted therapy. However, it remains challenging to rapidly and uniformly manufacture cell-loaded microswimmers that can be assembled into cell-supporting structures at diseased sites. Here, rapid and uniform manufacturable 2D magnetic achiral microswimmers with pores were fabricated to deliver bone marrow mesenchymal stem cells (BMSCs) to regenerate articular-damaged cartilage. Under actuation with magnetic fields, the BMSC-loaded microswimmers take advantage of the achiral structure to exhibit rolling or swimming motions to travel on smooth and rough surfaces, up inclined planes, or in the bulk fluid. Cell viability, proliferation, and differentiation tests performed days after cell seeding verified the microswimmers' biocompatibility. Long-distance targeting and in situ assemblies into 3D cell-supporting structures with BMSC-loaded microswimmers were demonstrated using a knee model and U-shaped wells. Overall, combining the advantages of preparing an achiral 2D structured microswimmer with magnetically driven motility results in a platform for cell transport and constructing 3D cell cultures that can improve cell delivery at lesion sites for biomedical applications.

9.
Anticancer Agents Med Chem ; 23(3): 306-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35598248

RESUMO

AIM: The main aim of this study is to improve the solubility, reduce side effects and increase the therapeutic efficacy of CSL by using functionalized graphene oxide as a carrier, to fulfill chemo-photothermal therapy. BACKGROUND: Celastrol (CSL), which is extracted from the traditional Chinese medicinal plant Tripterygium wilfordii, has reported significant antitumor activity in vitro and in vivo cancer models. However, disadvantages with regard to solubility, short plasma half-life and toxicity hinder its use in pharmaceutical application. Nanocarrier delivery system could be employed to improve the biochemical and pharmacokinetic performance of CSL. Among numerous nanocarriers, graphene oxide is one of the most promising nanocarriers due to its intrinsic physical and chemical properties and good biocompatibility. OBJECTIVE: Here, we employed a PEGylated reduced nanographene oxide CSL complex (nrGO-PEG/CSL) as a new drug delivery system to achieve highly efficient synergistic chemo/photothermal therapy. METHODS: A functionalized nrGO-PEG was synthesized and the loading capacity of CSL, photothermal effect and release efficiency under different pH and NIR irradiation were measured in the first stage of work. In vitro and in vivo anticancer effects of prepared nrGO-PEG/CSL complex were evaluated on 4T1 cells and 4T1 tumor-bearing mice, respectively, with the association of NIR laser irradiation. RESULTS: The functionalized nrGO-PEG exhibited excellent drug loading capacity of CSL (20.76 mg/mg GO) and photothermal effect (~3.0 -fold increment over unreduced nGO-PEG). Loaded CSL could be efficiently released from nrGO-PEG/CSL complex by NIR irradiation in vitro. In vivo study performed on 4T1 tumor-bearing mice proved that nrGO-PEG/CSL with NIR laser irradiation shows superior anticancer effects. CONCLUSION: The experimental data demonstrated that the nrGO-PEG/CSL-mediated chemo/photothermal combination therapy was more cytotoxic to cancer cells than only chemotherapy or photothermal treatment, reducing the occurrence of tumor metastasis. Therefore, nrGO-PEG/CSL-mediated chemo/photothermal is expected to be a promising treatment for synergistic cancer therapy.


Assuntos
Neoplasias , Óxidos , Animais , Camundongos , Óxidos/farmacologia , Óxidos/química , Terapia Fototérmica , Fototerapia , Polietilenoglicóis/química
10.
Polymers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559876

RESUMO

Magnetically actuated microrobots showed increasing potential in various fields, especially in the biomedical area, such as invasive surgery, targeted cargo delivery, and treatment. However, it remains a challenge to incorporate biocompatible natural polymers that are favorable for practical biomedical applications. In this work, bilayer magnetic microrobots with an achiral planar design were fabricated using a biocompatible natural polymer and Fe3O4 nanoparticles through the photolithography by applying the layer-by-layer method. The microrobots consisted of a magnetic bottom layer and a photo-crosslinked chitosan top layer. The SEM results showed that the microrobot processed the L-shaped planar structure with the average width, length, and thickness of 99.18 ± 5.11 µm, 189.56 ± 11.37 µm, and 23.56 ± 4.08 µm, respectively. Moreover, microrobots actuated using a three-dimensional (3D) Helmholtz coil system was characterized and reached up to an average maximum velocity of 325.30 µm/s and a step-out frequency of 14 Hz. Furthermore, the microrobots exhibited excellent cell biocompatibility towards L929 cells in the CCK-8 assay. Therefore, the development of bi-layered chitosan-based microrobots offers a general solution for using magnetic microrobots in biomedical applications by providing an easy-to-fabricate, highly mobile microrobotic platform with the incorporation of biocompatible natural polymers for enhanced biocompatibility.

11.
ACS Appl Mater Interfaces ; 14(51): 56548-56559, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36521052

RESUMO

Biohybrid micro/nanorobots have demonstrated improved therapeutic outcomes for targeting and treating diseases in preclinical trials. However, in vivo applications remain challenging due to a lack of sufficient targeting. Based on evidence that immune cells play a role in the immune modulation in the tumor microenvironment, we developed M1 macrophage membrane-coated magnetic photothermal nanocomplexes (MPN) for photoacoustic (PA) imaging-guided tumor therapy. The MPN were able to inherit the protein from the original macrophage cells and exert a targeted immunosuppression role. Integrating black phosphorus quantum dots and DOX also greatly enhanced reactive oxygen species generation and chemo-phototherapy efficacy. The results suggest that the MPN can be employed as an excellent tumor immunotargeting nanorobotic platform for modulating the tumor microenvironment under PA imaging and magnetic guidance and, thus, exert synergistic therapeutic efficacies.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Biomimética , Nanopartículas/uso terapêutico , Hipertermia Induzida/métodos , Fototerapia/métodos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Fenômenos Magnéticos , Doxorrubicina/uso terapêutico , Microambiente Tumoral
12.
World J Gastroenterol ; 28(28): 3682-3694, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36161049

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) infects about 50% of the world population and is the major cause of chronic gastritis, peptic ulcers, and gastric cancer. Chronic H. pylori infection induces gastric mucosal precancerous lesions mostly in adulthood, and it is debatable whether these pathological conditions can occur in childhood and adolescents as well. Since this is a critical issue to determine if intervention should be offered for this population group, we investigated the gastric mucosal precancerous lesions in pediatric patients in an area in central China with a high prevalence of H. pylori and gastric cancer. AIM: To investigate the relationship of H. pylori infection and gastric mucosal precancerous lesions in children and adolescents in central China. METHODS: We screened 4258 ward-admitted children and adolescent patients with upper gastrointestinal symptoms, and finally enrolled 1015 pediatric patients with H. pylori infection and endoscopic and histological data. H. pylori infection status was determined by rapid urease test and histopathological examination. Both clinical and pathological data were collected and analyzed retrospectively. Occurrence of gastric mucosal precancerous lesions, inflammatory activity and degree of inflammatory cell infiltration between H. pylori-positive and -negative groups were compared. RESULTS: Among the 1015 eligible children and adolescents, the overall H. pylori infection rate was 84.14% (854/1015). The infection rate increased with age. The incidence of gastric mucosal precancerous lesions in H. pylori-infected children was 4.33% (37/854), which included atrophic gastritis (17 cases), intestinal metaplasia (11 cases) and dysplasia (9 cases). In H. pylori-negative patients, only 1 atrophic gastritis case [0.62%, (1/161)] was found (P < 0.05). Active inflammation in H. pylori-infected patients was significantly higher than that in non-infected patients, and the H. pylori-infected group showed more severe lymphocyte and neutrophil granulocyte infiltration (P < 0.001). In addition, endoscopy revealed that the most common findings in H. pylori-positive patients were antral nodularity, but in H. pylori-negative patients only superficial gastritis was observed. CONCLUSION: In children and adolescents, gastric mucosal precancerous lesions occurred in 4.33% of H. pylori-infected patients in central China. These cases included atrophic gastritis, intestinal metaplasia, and dysplasia. The data revealed an obvious critical issue requiring future investigation and intervention for this population group.


Assuntos
Gastrite Atrófica , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Lesões Pré-Cancerosas , Neoplasias Gástricas , Adolescente , Adulto , Criança , Mucosa Gástrica/patologia , Gastrite/patologia , Gastrite Atrófica/patologia , Infecções por Helicobacter/patologia , Humanos , Metaplasia/patologia , Lesões Pré-Cancerosas/epidemiologia , Lesões Pré-Cancerosas/patologia , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Urease
13.
J Inflamm Res ; 15: 4467-4486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966005

RESUMO

Purpose: To explore the therapeutic mechanism of bone marrow mesenchymal stem cells derived exosomes (BMSC-Exos) for doxorubicin (DOX)-induced cardiotoxicity (DIC) and identify the long noncoding RNAs' (lncRNAs') anti-inflammation function derived by BMSC-Exos. Materials and Methods: High-throughput sequencing and transcriptome bioinformatics analysis of lncRNA were performed between DOX group and BEC (bone marrow mesenchymal stem cells derived exosomes coculture) group. Elevated lncRNA (ElncRNA) in the cardiomyocytes of BEC group compared with DOX group were confirmed. Based on the location and co-expression relationship between ElncRNA and its target genes, we predicted two target genes of ElncRNA, named cis_targets and trans_targets. The target genes were analyzed by enrichment analyses. Then, we identified the key cellular biological pathways regulating DIC. Experiments were performed to verify the therapeutic effects of exosomes and the origin of lncRNAs in vitro and in vivo. Results: Three hundred and one lncRNAs were differentially expressed between DOX and BEC groups (fold change >1.5 and p < 0.05), of which 169 lncRNAs were elevated in the BEC group compared with the DOX group. GO enrichment analysis of target genes of ElncRNAs showed that they were predominantly involved in inflammation-associated processes. KEGG analysis indicated that their regulatory pathways were mainly involved in oxidative stress-induced inflammation and proliferation of cardiomyocyte. The verification experiments in vitro showed that the oxidative stress and cell deaths were decreased in BEC groups. Moreover, from the top 10 ElncRNAs identified in the sequencing results, MSTRG.98097.4 and MSTRG.58791.2 were both decreased in the DOX group and elevated in BEC group. While in verification experiments in vivo, only the expression of MSTRG.58791.2 is consistent with the result in vitro. Conclusion: Our results show that ElncRNA, MSTRG.58791.2, is possibly secreted by the BMSC-Exos and able to alleviate DIC by suppressing inflammatory response and inflammation-related cell death.

14.
Entropy (Basel) ; 24(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35885113

RESUMO

In this paper, a multi-strategy adaptive comprehensive learning particle swarm optimization algorithm is proposed by introducing the comprehensive learning, multi-population parallel, and parameter adaptation. In the proposed algorithm, a multi-population parallel strategy is designed to improve population diversity and accelerate convergence. The population particle exchange and mutation are realized to ensure information sharing among the particles. Then, the global optimal value is added to velocity update to design a new velocity update strategy for improving the local search ability. The comprehensive learning strategy is employed to construct learning samples, so as to effectively promote the information exchange and avoid falling into local extrema. By linearly changing the learning factors, a new factor adjustment strategy is developed to enhance the global search ability, and a new adaptive inertia weight-adjustment strategy based on an S-shaped decreasing function is developed to balance the search ability. Finally, some benchmark functions and the parameter optimization of photovoltaics are selected. The proposed algorithm obtains the best performance on 6 out of 10 functions. The results show that the proposed algorithm has greatly improved diversity, solution accuracy, and search ability compared with some variants of particle swarm optimization and other algorithms. It provides a more effective parameter combination for the complex engineering problem of photovoltaics, so as to improve the energy conversion efficiency.

15.
PLoS Negl Trop Dis ; 16(7): e0010618, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849619

RESUMO

2-Deoxy-D-glucose (2-DG) is a glucose analog used as a promising anticancer agent. It exerts its effects by inhibiting the glycolytic energy metabolism to deplete cells of energy. The larval stage of Echinococcus relies on glycolysis for energy production. Therefore, in this study, we investigated the in vitro and in vivo efficacy of 2-DG against the larval stage of Echinococcus granulosus and E. multilocularis. 2-DG exhibited significant time- and dose-dependent effects against in vitro cultured E. granulosus protoscoleces and E. multilocularis metacestodes. A daily oral administration of 500 mg/kg 2-DG in E. multilocularis-infected mice effectively reduced the weight of metacestodes. Notably, the combination treatment, either 2-DG (500 mg/kg/day) + albendazole (ABZ) (200 mg/kg/day) or 2-DG (500 mg/kg/day) + half-dose of ABZ (100 mg/kg/day), exhibited a potent therapeutic effect against E. multilocularis, significantly promoting the reduction of metacestodes weight compared with the administration of 2-DG or ABZ alone. Furthermore, the combination significantly promoted apoptosis of the cells of metacestodes and inhibited glycolysis in metacestodes, compared with the administration of 2-DG or ABZ alone. In conclusion, 2-DG exerts an effective activity against the larval stage of Echinococcus. Thus, it may be a promising anti-Echinococcus drug, and its combination with ABZ may provide a new strategy for the treatment of echinococcosis in humans.


Assuntos
Equinococose , Echinococcus granulosus , Echinococcus multilocularis , Albendazol/farmacologia , Albendazol/uso terapêutico , Animais , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Equinococose/tratamento farmacológico , Glucose , Humanos , Larva , Camundongos
16.
Sci Rep ; 12(1): 13080, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906371

RESUMO

With the development and progress of nanotechnology, the prospect of using nanorobots to achieve targeted drug delivery is becoming possible. Although nanorobots can potentially improve nano-drug delivery systems, there remains a significant challenge to fabricating magnetically controllable nanorobots with a size suitable for drug delivery in complex in vivo environments. Most of the current research focused on the preparation and functionalization of microscale and milliscale robots due to the relative difficulties in fabricating nanoscale robots. To address this problem and move towards in vivo applications, this study uses electron beam lithography to fabricate achiral planar L-shaped nanorobots that are biocompatible with immune cells. Their minimal planar geometry enabled nanolithography to fabricate nanorobots with a minimum feature size down to 400 nm. Using an integrated imaging and control system, the locomotive behavior of the L-shaped nanorobots in a fluidic environment was studied by examining their velocity profiles and trajectories. Furthermore, the nanorobots exhibit excellent cell compatibility with various types of cells, including macrophage cells. Finally, the long-term cell culture medium immersion test demonstrated that the L-shaped nanorobots have robust stability. This work will demonstrate the potential to use these nanorobots to operate in vivo without triggering immune cell responses.


Assuntos
Elétrons , Nanotecnologia , Sistemas de Liberação de Medicamentos , Macrófagos , Magnetismo
17.
iScience ; 25(7): 104507, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35720266

RESUMO

To realize the potential to use micro/nanorobots for targeted cancer therapy, it is important to improve their biocompatibility and targeting ability. Here, we report on drug-loaded magnetic microrobots capable of polarizing macrophages into the antitumor phenotype to target and inhibit cancer cells. In vitro tests demonstrated that the microrobots have good biocompatibility with normal cells and immune cells. Positively charged DOX was loaded onto the surface of microrobots via electrostatic interactions and exhibited pH-responsive release behavior. The nano-smooth surfaces of the microrobots activated M1 polarization of macrophages, thus activating their intrinsic targeting and antitumor abilities toward cancer cells. Through dual targeting from magnetic guidance and M1 macrophages, the microrobots were able to target and kill cancer cells in a 3D tumor spheroid culture assay. These findings demonstrate a way to improve the tumor-targeting and antitumor abilities of microrobots through the combined use of magnetic control, macrophages, and pH-responsive drug release.

18.
Front Oncol ; 12: 869260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530359

RESUMO

Objective: To prepare technetium-99m (99mTc)-labeled pH (low) insertion peptide variant 7 [pHLIP (Var7)] and carry out small-animal single-photon-emission computed tomography (SPECT)/computed tomography (CT) imaging of tumor-bearing nude mice in vivo to study its value in the early diagnosis of triple-negative breast cancer (TNBC). Methods: The pHLIP (Var7) sequence was synthesized via solid-phase peptide synthesis. Four amino acids, Gly-(D)-Ala-Gly-Gly, were attached to the N-terminus of pHLIP (Var7) to form a strong chelating group containing an N4 structure. The peptide was labeled with 99mTc using a direct labeling method. We determined the in vitro binding fraction of 99mTc-pHLIP (Var7) to MDA-MB-231 cells. Serial biodistribution studies and small-animal SPECT/CT imaging in MDA-MB-231 TNBC-bearing mice were performed using 99mTc-pHLIP (Var7). Results: The radiochemical yield and purity of 99mTc-pHLIP (Var7) were 99.49 ± 0.17% and 99.63 ± 0.44%, respectively. The radiochemical purity was still more than 96% after 24 h in serum. The binding fraction of 99mTc-pHLIP (Var7) to MDA-MB-231 cells continuously increased in an acidic environment and was significantly higher than the cell-binding fraction (P < 0.01) at pH = 7.4 and the cell-binding fraction (P < 0.01) of 99mTc-kVar7 at different pH values (pH = 6.0, 6.5, 7.0 and 7.4) at each time point (P < 0.01). The distribution of 99mTc-pHLIP (Var7) in tumors at each time point was significantly greater than that of 99mTc-kVar7 (P < 0.01). SPECT/CT imaging was largely consistent with the biodistribution results; the tumor was clearly imaged at each time point after injection of 99mTc-pHLIP (Var7) but could not be imaged after injection of 99mTc-kVar7. Conclusion: 99mTc-pHLIP (Var7) showed a high radiochemical yield and stability and was highly concentrated in tumor tissues. Although there was strong radioactive background in the abdomen of tumor-bearing nude mice, it did not hinder early diagnosis of TNBC.

19.
Micromachines (Basel) ; 13(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630266

RESUMO

The small size of robotic microswimmers makes them suitable for performing biomedical tasks in tiny, enclosed spaces. Considering the effects of potentially long-term retention of microswimmers in biological tissues and the environment, the degradability of microswimmers has become one of the pressing issues in this field. While degradable hydrogel was successfully used to prepare microswimmers in previous reports, most hydrogel microswimmers could only be fabricated using two-photon polymerization (TPP) due to their 3D structures, resulting in costly robotic microswimmers solution. This limits the potential of hydrogel microswimmers to be used in applications where a large number of microswimmers are needed. Here, we proposed a new type of preparation method for degradable hydrogel achiral crescent microswimmers using a custom-built stop-flow lithography (SFL) setup. The degradability of the hydrogel crescent microswimmers was quantitatively analyzed, and the degradation rate in sodium hydroxide solution (NaOH) of different concentrations was investigated. Cytotoxicity assays showed the hydrogel crescent microswimmers had good biocompatibility. The hydrogel crescent microswimmers were magnetically actuated using a 3D Helmholtz coil system and were able to obtain a swimming efficiency on par with previously reported microswimmers. The results herein demonstrated the potential for the degradable hydrogel achiral microswimmers to become a candidate for microscale applications.

20.
Med Sci Monit ; 28: e934493, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35322001

RESUMO

BACKGROUND Mismatch repair deficiency (dMMR) is associated with endometrial cancers, yet it remains unknown how this information could be incorporated into adjuvant treatment paradigms. We performed this cohort study to identify the effect of dMMR status on the prognosis of patients with advanced endometrial cancer treated with PD-1 inhibitor and bevacizumab. MATERIAL AND METHODS We enrolled 93 patients with advanced endometrial cancer and divided them into an observation group (n=52) and a control group (n=41) according to the treatment. The control group was treated with bevacizumab combined with paclitaxel chemotherapy, while the observation group was treated with PD-1inhibitor combined with bevacizumab. The basic characteristics and overall survival times were compared between the 2 groups. RESULTS There was no significant difference in age, course of disease, clinical stage, or pathological type. The proportion of patients with dMMR and high-level microsatellite instability (MSI-H) were balanced in the 2 groups. Patients in the observation group had longer overall survival than those in the control group (33.2 months vs 21.8 months). Moreover, in the observation group, the median OS of dMMR patients was not detected, while the median OS of PMMR patients was 29.2 months (P<0.01). In the control group, the median OS of dMMR patients was 12.4 months, and that of PMMR patients was 24.1 months (P<0.01). CONCLUSIONS Advanced endometrial cancer patients with dMMR/MSI-H treated with PD-1 inhibitor plus bevacizumab had longer overall survival (OS) than those treated with bevacizumab plus paclitaxel chemotherapy.


Assuntos
Neoplasias Colorretais , Neoplasias do Endométrio , Bevacizumab/uso terapêutico , Neoplasias Encefálicas , Estudos de Coortes , Neoplasias Colorretais/tratamento farmacológico , Reparo de Erro de Pareamento de DNA , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Instabilidade de Microssatélites , Síndromes Neoplásicas Hereditárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...