Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38598349

RESUMO

ABSTRACT: Tendon injury produces intractable pain and disability in movement, but the medications for analgesia and restoring functional integrity of tendon are still limited. In this study, we report that proteinase-activated receptor 2 (PAR2) activation in dorsal root ganglion (DRG) neurons contributes to chronic pain and tendon histopathological changes produced by Achilles tendon partial transection injury (TTI). Tendon partial transection injury increases the expression of PAR2 protein in both somata of DRG neurons and their peripheral terminals within the injured Achilles tendon. Activation of PAR2 promotes the primary sensory neuron plasticity by activating downstream cAMP-PKA pathway, phosphorylation of PKC, CaMKII, and CREB. Blocking PAR2 signaling by PAR2 small-interference RNA or antagonistic peptide PIP delays the onset of TTI-induced pain, reverses the ongoing pain, as well as inhibits sensory nerve sprouting, and promotes structural remodeling of the injured tendon. Vitamin B complex (VBC), containing thiamine (B1), pyridoxine (B6), and cyanocobalamin (B12), is effective to ameliorate TTI-induced pain, inhibit ectopic nerve sprouting, and accelerate tendon repair, through suppressing PAR2 activation. These findings reveal a critical role of PAR2 signaling in the development of chronic pain and histopathological alterations of injured tendon following Achilles tendon injury. This study suggests that the pharmaceuticals targeting PAR2, such as VBC, may be an effective approach for the treatment of tendon injury-induced pain and promoting tendon repair.

2.
Biomedicines ; 12(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540203

RESUMO

Diabetic neuropathic pain (DNP) is one of the common and severe late-stage complications of diabetes mellitus, which could greatly influence the patients' quality of life. Patients with DNP often experience spontaneous pain and evoked pain such as mechanical allodynia and thermal hyperalgesia, meaning that their physical and psychological health are severely impaired. Unfortunately, the mechanisms of DNP remain highly elusive, so substantial breakthrough in effective DNP targeted treatments is still clinically challenging. This article will hence summarise the main mechanisms currently known to underlie DNP pathogenesis, along with describing some of the current and potential treatment methods against diabetic neuropathic pain.

3.
Trends Neurosci ; 47(5): 355-366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490858

RESUMO

The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.


Assuntos
Anestésicos , Encéfalo , Humanos , Animais , Encéfalo/fisiologia , Encéfalo/efeitos dos fármacos , Anestésicos/farmacologia , Anestesia/métodos , Estado de Consciência/fisiologia , Estado de Consciência/efeitos dos fármacos , Período de Recuperação da Anestesia
4.
Curr Opin Neurol ; 36(5): 388-393, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639435

RESUMO

PURPOSE OF REVIEW: Vitamin deficiency is a risk factor in the development of peripheral neuropathy, which leads to complex and severe diseases. This review provides an update overview of the literature on the roles of vitamins in peripheral neuropathy, highlighting their pathophysiological and therapeutic roles. RECENT FINDINGS: The importance and clinical manifestations and implications of the vitamins and vitamin deficiencies are further demonstrated in peripheral neuropathy and the associated diseases. Vitamin deficiency is common in various severe and complex diseases such as diabetes, chemotherapy, acute nutritional axonal neuropathy, dermatitis, complex regional pain syndrome, postherpetic neuralgia, carpal tunnel syndrome, and so forth and some rare clinical case reports. There is evidence that deficiencies of almost all vitamins are associated with diabetic neuropathy. Vitamin supplementation may serve as an effective therapeutic strategy. SUMMARY: The vitamins play critical roles in maintaining physiological functions, and vitamin deficiencies cause peripheral neuropathy with various severe and complex diseases. The therapeutic benefits of vitamins and further understanding of the mechanisms for vitamin treatment effects should be emphasized and highlighted. More clinical trials are needed to establish optimal treatment strategies for vitamins in the various neuropathies. A large range of people/patients screening for vitamin deficiencies may be considered in order to provide early diagnosis and timely medical assistance.


Assuntos
Neuropatias Diabéticas , Vitaminas , Humanos , Vitaminas/uso terapêutico , Vitamina A , Vitamina K , Fatores de Risco
5.
Front Mol Neurosci ; 16: 1207911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389091

RESUMO

Introduction: Chronic cancer pain is one of the most unbearable symptoms for the patients with advanced cancer. The treatment of cancer pain continues to possess a major challenge. Here, we report that adjusting gut microbiota via probiotics can reduce bone cancer pain (BCP) in rats. Methods: The model of BCP was produced by tumor cell implantation (TCI) to the tibia in rats. Continuous feeding of Lactobacillus rhamnosus GG (LGG) was used to modulate the gut microbiota. Mechanical allodynia, bone destruction, fecal microbiota, and neurochemical changes in the primary dorsal root ganglion (DRG) and the spinal dorsal horn (DH) were assessed. Results: LGG supplementation (109 CFU/rat/day) delayed the production of BCP for 3-4 days and significantly alleviated mechanical allodynia within the first 2 weeks after TCI. TCI-induced proinflammatory cytokines TNF-α and IL-ß in the DH, and TCI-induced bone destruction in the tibia were both significantly reduced following LGG supplementation examined on day 8 after TCI. Meanwhile, we found that LGG supplementation, in addition to inhibiting TCI-induced pain, resulted in a significantly increased expression of the µ-opioid receptor (MOR) in the DH, but not in the DRG. LGG supplementation significantly potentiated the analgesic effect of morphine. Furthermore, LGG supplementation led to an increase in butyrate levels in the feces and serum and a decrease in histone deacetylase 2 (HDAC2) expression in the DH. Feeding TCI-rats with sodium butyrate solution alone, at a dose of 100 mg/kg, resulted in decreased pain, as well as decreased HDAC2 expression and increased MOR expression in the DH. The increased expression of MOR and decreased HDAC2 were also observed in neuro-2a cells when we treated the cells with serum from TCI rats with supplementation of LGG or sodium butyrate. Discussion: This study provides evidence that reshaping the gut microbiota with probiotics LGG can delay the onset of cancer pain. The butyrate-HDAC2-MOR pathway may be the underlying mechanism for the analgesic effect of LGG. These findings shed light on an effective, safe, and non-invasive approach for cancer pain control and support the clinical implication of probiotics supplementation for patients with BCP.

6.
Biomedicines ; 11(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37189739

RESUMO

Activation of microglia is one of the pathological bases of neuroinflammation, which involves various diseases of the central nervous system. Inhibiting the inflammatory activation of microglia is a therapeutic approach to neuroinflammation. In this study, we report that activation of the Wnt/ß-catenin signaling pathway in a model of neuroinflammation in Lipopolysaccharide (LPS)/IFN-γ-stimulated BV-2 cells can result in inhibition of production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Activation of the Wnt/ß-catenin signaling pathway also results in inhibition of the phosphorylation of nuclear factor-κB (NF-κB) and extracellular signal-regulated kinase (ERK) in the LPS/IFN-γ-stimulated BV-2 cells. These findings indicate that activation of the Wnt/ß-catenin signaling pathway can inhibit neuroinflammation through downregulating the pro-inflammatory cytokines including iNOS, TNF-α, and IL-6, and suppress NF-κB/ERK-related signaling pathways. In conclusion, this study indicates that the Wnt/ß-catenin signaling activation may play an important role in neuroprotection in certain neuroinflammatory diseases.

7.
Nat Neurosci ; 26(5): 751-764, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973513

RESUMO

The emergence of consciousness from anesthesia, once assumed to be a passive process, is now considered as an active and controllable process. In the present study, we show in mice that, when the brain is forced into a minimum responsive state by diverse anesthetics, a rapid downregulation of K+/Cl- cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) serves as a common mechanism by which the brain regains consciousness. Ubiquitin-proteasomal degradation is responsible for KCC2 downregulation, which is driven by ubiquitin ligase Fbxl4. Phosphorylation of KCC2 at Thr1007 promotes interaction between KCC2 and Fbxl4. KCC2 downregulation leads to γ-aminobutyric acid type A receptor-mediated disinhibition, enabling accelerated recovery of VPM neuron excitability and emergence of consciousness from anesthetic inhibition. This pathway to recovery is an active process and occurs independent of anesthetic choice. The present study demonstrates that ubiquitin degradation of KCC2 in the VPM is an important intermediate step en route to emergence of consciousness from anesthesia.


Assuntos
Anestesia , Anestésicos , Simportadores , Camundongos , Animais , Estado de Consciência , Núcleos Ventrais do Tálamo , Tálamo/metabolismo , Receptores de GABA/metabolismo , Simportadores/metabolismo , Ubiquitinas/metabolismo
8.
J Neuroinflammation ; 19(1): 169, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764988

RESUMO

BACKGROUND: Gut microbiota has been found involved in neuronal functions and neurological disorders. Whether and how gut microbiota impacts chronic somatic pain disorders remain elusive. METHODS: Neuropathic pain was produced by different forms of injury or diseases, the chronic constriction injury (CCI) of the sciatic nerves, oxaliplatin (OXA) chemotherapy, and streptozocin (STZ)-induced diabetes in mice. Continuous feeding of antibiotics (ABX) cocktail was used to cause major depletion of the gut microbiota. Fecal microbiota, biochemical changes in the spinal cord and dorsal root ganglion (DRG), and the behaviorally expressed painful syndromes were assessed. RESULTS: Under condition of gut microbiota depletion, CCI, OXA, or STZ treatment-induced thermal hyperalgesia or mechanical allodynia were prevented or completely suppressed. Gut microbiota depletion also prevented CCI or STZ treatment-induced glial cell activation in the spinal cord and inhibited cytokine production in DRG in OXA model. Interestingly, STZ treatment failed to induce the diabetic high blood glucose and painful hypersensitivity in animals with the gut microbiota depletion. ABX feeding starting simultaneously with CCI, OXA, or STZ treatment resulted in instant analgesia in all the animals. ABX feeding starting after establishment of the neuropathic pain in CCI- and STZ-, but not OXA-treated animals produced significant alleviation of the thermal hyeralgesia or mechanical allodynia. Transplantation of fecal bacteria from SPF mice to ABX-treated mice partially restored the gut microbiota and fully rescued the behaviorally expressed neuropathic pain, of which, Akkermansia, Bacteroides, and Desulfovibrionaceae phylus may play a key role. CONCLUSION: This study demonstrates distinct roles of gut microbiota in the pathogenesis of chronic painful conditions with nerve injury, chemotherapy and diabetic neuropathy and supports the clinical significance of fecal bacteria transplantation.


Assuntos
Dor Crônica , Diabetes Mellitus , Microbioma Gastrointestinal , Neuralgia , Animais , Antibacterianos/uso terapêutico , Antibacterianos/toxicidade , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/terapia , Ratos , Ratos Sprague-Dawley
9.
Life (Basel) ; 12(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629419

RESUMO

Nerve injury causes hyperexcitability of the dorsal root ganglion (DRG) and spinal dorsal horn (DH) neurons, which results in neuropathic pain. We have previously demonstrated that partial dorsal rhizotomy (PDR) produced less severe pain-like behavior than chronic constriction injury (CCI) or chronic compression of DRG (CCD) and did not enhance DRG neuronal excitability. However, the mechanisms underlying such discrepancy remain unclear. This study was designed to compare the activation of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in DRG and DH, and c-Fos in DH following treatments of CCI, CCD, and PDR. We confirmed that thermal hyperalgesia produced by PDR was less severe than that produced by CCI or CCD. We showed that pERK1/2 in DRG and DH was greatly activated by CCI or CCD, whereas PDR produced only transient and mild pERK1/2 activation. CCI, CCD, and PDR induced robust c-Fos expression in DH; nevertheless, c-Fos+ neurons following PDR were much fewer than that following CCI or CCD. Blocking retrograde axonal transport by colchicine proximal to the CCI injury site diminished thermal hyperalgesia and inhibited pERK1/2 and c-Fos activation. These findings demonstrate that less severe pain-like behavior produced by PDR than CCI or CCD attributes to less activation of pERK1/2 and c-Fos. Such neurochemical activation partially relies on retrograde axonal transport of certain "injury signals" from the peripheral injured site to DRG somata.

10.
Eur J Pain ; 26(1): 133-142, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288242

RESUMO

BACKGROUND: The mechanism for reduced pain sensitivity associated with Alzheimer's disease (AD) has not been illustrated. We hypothesize that amyloid beta 1-42 (Aß1-42) in the spinal cord acts as an endogenous analgesic peptide to suppress pain induced by nerve injury. METHODS: We used chronic constriction injury of the sciatic nerve (CCI) to produce neuropathic pain in Sprague-Dawley rats. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were used to determine the level of Aß1-42, the expression of Wnt3a/5b and glial activation in the spinal cord. Western blotting was used to determine the expression of interleukins, the phosphorylation of NR2B and ERK1/2, and the nuclear accumulation of transcriptional factors YAP/TAZ. Thermal hyperalgesia and mechanical allodynia were assessed after CCI and pharmacological manipulations through intrathecal administration. RESULTS: Nerve injury increases spinal level of Aß1-42, while intrathecal administration of MK-8931 reduces the level of Aß1-42 and facilitates mechanical allodynia. Intrathecal administration of Aß1-42 suppresses pain behaviors in the early and late phases of neuropathy. Spinal administration of Aß1-42 regulates the expression of interleukins, reducing glial activation and phosphorylation of NR2B and ERK1/2 in the spinal cord of CCI rats. Furthermore, intrathecal administration of Aß1-42 decreases Wnt5b expression and suppresses the nuclear accumulation of YAP and TAZ. Blocking the interaction between Aß1-42 and Frizzled receptors by cSP5 reverses the analgesic effects of Aß1-42. CONCLUSIONS: These findings suggest that spinal Aß1-42 acts as an endogenous analgesic peptide through regulating cytokines and Wnt pathways. This study may provide a potential target for the development of novel analgesic peptides. SIGNIFICANCE: This study provides an explanation of reduced pain sensitivity associated with Alzheimer's disease. Furthermore, our findings propose a possible physiological function of beta-amyloid1-42 to regulate pain. This study may provide a potential target for the development of novel analgesics based on an existing endogenous peptide.


Assuntos
Peptídeos beta-Amiloides , Neuralgia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo
11.
Aging Dis ; 12(7): 1808-1820, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34631222

RESUMO

The treatment of diabetic neuropathic pain (DNP) is a major clinical challenge. The underlying mechanisms of diabetic neuropathy remain unclear, and treatment approaches are limited. Here, we report that the gelatinases MMP-9 and MMP-2 play a critical role in axonal demyelination and DNP in rodents. MMP-9 may contribute to streptozotocin (STZ)-induced DNP via inducing axonal demyelination and spinal central sensitization, while MMP-2 may serve as a negative regulator. In STZ-induced DNP rats, the activity of MMP-9 was increased, while MMP-2 was decreased in the dorsal root ganglion and spinal cord. Spinal inhibition of MMP-9, but not MMP-2, greatly suppressed the behavioral and neurochemical signs of DNP, while administration of MMP-2 alleviated mechanical allodynia. In mice, STZ treatment resulted in axonal demyelination in the peripheral sciatic nerves and spinal dorsal horn, in addition to mechanical allodynia. These neuropathic alterations were significantly reduced in MMP-9-/- mice. Finally, systematic administration of α-lipoic acid significantly suppressed STZ-induced mechanical allodynia by inhibiting MMP-9 and rescuing MMP-2 activity. These findings support a new mechanism underlying the pathogenesis of diabetic neuropathy and suggest a potential target for DNP treatment. Gelatinases MMP-9 and MMP-2 play a critical role in the pathogenesis of diabetic neuropathy and may serve as a potential treatment target. MMP-9/2 underlies the mechanism of α-lipoic acid in diabetic neuropathy, providing a potential target for the development of novel analgesic and anti-inflammatory drugs.

12.
J Pain Res ; 14: 2943-2958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34584448

RESUMO

Traditionally, musculoskeletal pain management has focused on the use of conventional treatments to relieve pain. However, multi-modal integrative medicine including alternative/complementary treatments is becoming more widely used and integrated into treatment guidelines around the world. The uptake of this approach varies according to country, with generally a higher uptake in developed countries and in females aged more than 40 years. Integral to the concept described here, is that the body has an innate ability to self-heal, which can be optimized by the use of integrative medical strategies. Stress triggers for acute or recurring musculoskeletal pain are diverse and can range from physical to psychological. The mechanism by which the body responds to triggers and initiates the self-healing processes is complex, but five body networks or processes are thought to be integral: the nervous system, microcirculation/vasodilation, immune modulation, muscular relaxation/contraction and psychological balance. Multi-modal integrative medicine approaches include nutritional/dietary modification, postural/muscular training exercises, and cognitive behavioral mind/body techniques. This article will review the self-healing concept and provide plausible scientific evidence where available.

13.
Front Mol Neurosci ; 14: 665085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025351

RESUMO

Cancer and cancer pain processes a major clinical challenge and the underlined mechanisms of pathogenesis remain elusive. We examined the specific changes in the transcriptomic profiles in the dorsal root ganglion (DRG) neurons of rats with bone cancer and bone cancer pain (BCP) using RNA sequencing technology. The bone cancer and BCP was induced by tumor cells implantation (TCI) into the tibia bone cavity in adult female rats. One week after treatment, TCI caused up- and down-regulation of thousands of genes in DRG. These genes were mainly involved in the immune process, inflammatory response, and intracellular signaling transduction of carbohydrate and cytokine. The cAMP and calcium signaling pathways were the major processes in the initial responses. Differentially expressed gene (DEG) analysis further showed that the genes for ion channels increased during day 1-7, while the genes for cytokine signaling pathways sustainedly increased during day 7-14 after TCI. The time courses of gene expression for ion channels and cytokines support their distinct roles in the early induction and late maintenance of BCP development. In addition, among the top 500 up- and down-regulated genes, 80-90% were unique for bone cancer pain as well as neuropathic and inflammatory pain, while less than 2% were shared among the three different forms of pain. This study reveals the uniqueness of mechanisms underlying bone cancer with pain, which is, to a large extent, differently from pain after acute inflammatory and nerve injury and provides novel potential targets of DEGs for bone cancer with pain.

14.
Pain Rep ; 6(1): e931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997586

RESUMO

The coronavirus disease 2019 (COVID-19) global pandemic poses a major threat to human health and health care systems. Urgent prevention and control measures have obstructed patients' access to pain treatment, and many patients with pain have been unable to receive adequate and timely medical services. Many patients with COVID-19 report painful symptoms including headache, muscle pain, and chest pain during the initial phase of the disease. Persistent pain sequela in patients with COVID-19 has a physical or mental impact and may also affect the immune, endocrine, and other systems. However, the management and treatment of neurological symptoms such as pain are often neglected for patients hospitalized with COVID-19. Based on the China's early experience in the management of COVID-19 symptoms, the possible negative effects of pre-existing chronic pain in patients with COVID-19 and the challenges of COVID-19 prevention and control bring to the diagnosis and treatment of chronic pain are discussed. This review calls to attention the need to optimize pain management during and after COVID-19.

15.
J Clin Pharm Ther ; 46(5): 1199-1212, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33565138

RESUMO

WHAT IS KNOWN AND OBJECTIVE: B vitamin therapy is a common treatment for diabetic pain and neuropathy, yet its use remains controversial in patients lacking B vitamin deficiencies. The aim of this review was to summarize the current evidence for the efficacy of B vitamin therapy in diabetic patients with neuropathy. COMMENT: We screened the English literature for clinical studies evaluating B vitamins as a therapy for pain and neuropathy in diabetic patients. We selected 43 relevant studies for qualitative analysis based on our selection criteria. Our survey of the literature revealed substantive heterogeneity with respect to efficacies of reported outcomes, as well as study design. Most beneficial outcomes were reported against baseline measures, with few positive comparisons against placebo. This highlights the need for larger, placebo-controlled studies. WHAT IS NEW AND CONCLUSION: B vitamins should be considered a plausible therapy for diabetic neuropathy, but its overall efficacy remains uncertain and requires further study.


Assuntos
Dor Crônica/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Complexo Vitamínico B/uso terapêutico , Combinação de Medicamentos , Humanos
16.
Pain ; 161(9): 1976-1982, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32694387

RESUMO

ABSTRACT: The current International Association for the Study of Pain (IASP) definition of pain as "An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage" was recommended by the Subcommittee on Taxonomy and adopted by the IASP Council in 1979. This definition has become accepted widely by health care professionals and researchers in the pain field and adopted by several professional, governmental, and nongovernmental organizations, including the World Health Organization. In recent years, some in the field have reasoned that advances in our understanding of pain warrant a reevaluation of the definition and have proposed modifications. Therefore, in 2018, the IASP formed a 14-member, multinational Presidential Task Force comprising individuals with broad expertise in clinical and basic science related to pain, to evaluate the current definition and accompanying note and recommend whether they should be retained or changed. This review provides a synopsis of the critical concepts, the analysis of comments from the IASP membership and public, and the committee's final recommendations for revisions to the definition and notes, which were discussed over a 2-year period. The task force ultimately recommended that the definition of pain be revised to "An unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage," and that the accompanying notes be updated to a bulleted list that included the etymology. The revised definition and notes were unanimously accepted by the IASP Council early this year.


Assuntos
Dor , Humanos , Dor/diagnóstico
18.
Pain ; 161(7): 1584-1596, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32149862

RESUMO

EphrinB-EphB receptor tyrosine kinases have been demonstrated to play important roles in pain processing after peripheral nerve injury. We have previously reported that ephrinB-EphB receptor signaling can regulate excitability and plasticity of neurons in spinal dorsal horn, and thus contribute to spinal central sensitization in neuropathic pain. How EphB receptor activation influences excitability of primary neurons in dorsal root ganglion (DRG), however, remains unknown. Here, we report that EphB receptor activation facilitates calcium influx through N-methyl-D-aspartate receptor (NMDAR) dependent and independent manners. In cultured DRG cells from adult rats, EphB1 and EphB2 receptors were expressed in neurons, but not the glial cells. Bath application of EphB receptor agonist ephrinB2-Fc induced NMDAR-independent Ca influx, which was from the extracellular space rather than endoplasmic reticulum. EphB receptor activation also greatly enhanced NMDAR-dependent Ca influx and NR2B phosphorylation, which was prevented by pretreatment of Src kinase inhibitor PP2. In nerve-injured DRG neurons, elevated expression and activation of EphB1 and EphB2 receptors contributed to the increased intracellular Ca concentration and NMDA-induced Ca influx. Repetitive intrathecal administration of EphB2-Fc inhibited the increased phosphorylation of NR2B and Ca-dependent subsequent signals Src, ERK, and CaMKII as well as behaviorally expressed pain after nerve injury. These findings demonstrate that activation of EphB receptors can modulate DRG neuron excitability by facilitating Ca influx directly or through Src kinase activation-mediated NMDA receptor phosphorylation and that EphB receptor activation is critical to DRG neuron hyperexcitability, which has been considered critical to the subsequent spinal central sensitization and neuropathic pain.


Assuntos
Receptores da Família Eph , Quinases da Família src , Animais , Cálcio , Hiperalgesia , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores da Família Eph/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Células Receptoras Sensoriais/metabolismo , Quinases da Família src/metabolismo
19.
Pain Res Manag ; 2020: 3740162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104520

RESUMO

Background: Treatment of diabetic neuropathic pain (DNP) continues to be a major challenge, and underlying mechanisms of DNP remain elusive. We investigated treatment effects of B vitamins on DPN- and DNP-associated alterations of neurochemical signaling in the nociceptive dorsal root ganglion (DRG) neurons and the spinal cord in rats. Methods: DNP was produced in male, adult, Sprague Dawley rats by single i.p. streptozotocin (STZ). Western blot analysis and immunohistochemistry were used to analyze protein expressions in DRG and ELISA to measure the proinflammatory cytokines in the spinal cord. Behaviorally expressed DNP was determined by measuring the sensitivity of hindpaw skin to mechanical and thermal stimulation. Results: There were 87.5% (77/88) rats which developed high blood glucose within 1-2 weeks following STZ injection. Of which, 70.13% (n = 54/77) animals exhibited DNP manifested as mechanical allodynia and/or thermal hyperalgesia. Intraperitoneal administration of vitamins B1/B6/B12 (100/100/2 mg/kg, one or multiple doses) significantly attenuated DNP without affecting the blood glucose. Expressions of P2X3 and TRPV1 in CGRP-positive and IB4-positive DRG neurons as well as the interleukin-1ß, tumor necrosis factor-α, and nerve growth factor in the lumbar spinal cord were greatly increased in DNP rats. Such DNP-associated neurochemical alterations were also greatly suppressed by the B-vitamin treatment. Conclusions: B-vitamin treatment can greatly suppress chronic DNP and DNP-associated increased activities of P2X3 and TRPV1 in DRG and the spinal proinflammatory cytokines, which may contribute to the pathogenesis of DNP. Systematic administration of B vitamins can be a strategy for DNP management in clinic.


Assuntos
Neuropatias Diabéticas , Gânglios Espinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Animais , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Gânglios Espinais/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/metabolismo , Medula Espinal/metabolismo , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...