Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 667: 321-337, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640652

RESUMO

Building a heterojunction is a fascinating option to guarantee sufficient carrier separation and transfer efficiency, but the mechanism of charge migration at the heterojunction interface has not been thoroughly studied. Herein, MIL-53(Fe)/Bi4O5I2 photocatalyst with a Z-scheme heterojunction structure is constructed, which achieves efficient photocatalytic decontamination under solar light. Driven by the newly-built internal electric field (IEF), the formation of Fe-O-Bi electron migration channel allows for rapid separation and transfer of charge carriers at the heterojunction interface, confirmed by the material characterization and density functional theory (DFT) calculation. The narrower band gap and improved visible light response also contribute to the enhanced photocatalytic activity of composite materials. With levofloxacin as the target pollutant, the optimal MIL-53(Fe)/Bi4O5I2 achieves complete removal of pollutant within 150 min, the photocatalysis rate of which is ca. 4.4 and 26.0 times that of pure Bi4O5I2 and MIL-53(Fe), respectively. Simultaneously, the optimal composite material exhibits satisfactory photodegradation of seven fluoroquinolones, and the photocatalysis rates are as follows: lomefloxacin > ciprofloxacin > enrofloxacin > norfloxacin > pefloxacin > levofloxacin > marbofloxacin. DFT calculations reveal a positive relationship between degradation rate and Fukui index (ƒ0) of main carbon atoms in seven fluoroquinolones. This study sheds light on the existence of electron migration channels at Z-scheme heterojunction interface to ensure sufficient photoinduced carrier transfer, and reveals the influence of pollutant structure on photolysis rate.

2.
Nat Commun ; 14(1): 7885, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036495

RESUMO

Recent studies have reported worldwide vegetation suppression in response to increasing atmospheric vapor pressure deficit (VPD). Here, we integrate multisource datasets to show that increasing VPD caused by warming alone does not suppress vegetation growth in northern peatlands. A site-level manipulation experiment and a multiple-site synthesis find a neutral impact of rising VPD on vegetation growth; regional analysis manifests a strong declining gradient of VPD suppression impacts from sparsely distributed peatland to densely distributed peatland. The major mechanism adopted by plants in response to rising VPD is the "open" water-use strategy, where stomatal regulation is relaxed to maximize carbon uptake. These unique surface characteristics evolve in the wet soil‒air environment in the northern peatlands. The neutral VPD impacts observed in northern peatlands contrast with the vegetation suppression reported in global nonpeatland areas under rising VPD caused by concurrent warming and decreasing relative humidity, suggesting model improvement for representing VPD impacts in northern peatlands remains necessary.


Assuntos
Gases , Plantas , Pressão de Vapor , Pressão Atmosférica , Carbono
3.
Microorganisms ; 11(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37894042

RESUMO

Fusarium root rot (FRR) seriously affects the growth and productivity of A. chinensis. Therefore, protecting A. chinensis from FRR has become an important task, especially for increasing A. chinensis production. The purpose of this study was to screen FRR control strains from the A. chinensis rhizosphere soil. Eighty-four bacterial strains and seven fungal strains were isolated, and five strains were identified with high inhibitory effects against Fusarium oxysporum (FO): Trichoderma harzianum (MH), Bacillus amyloliquefaciens (CJ5, CJ7, and CJ8), and Bacillus subtilis (CJ9). All five strains had high antagonistic effects in vitro. Results showed that MH and CJ5, as biological control agents, had high control potential, with antagonistic rates of 86.01% and 82.78%, respectively. In the pot experiment, the growth levels of roots and stems of A. chinensis seedlings treated with MH+CJ were significantly higher than those of control plants. The total nitrogen, total phosphorus, total potassium, indoleacetic acid, and chlorophyll contents in A. chinensis leaves were also significantly increased. In the biocontrol test, the combined MH + CJ application significantly decreased the malondialdehyde content in A. chinensis roots and significantly increased the polyphenol oxidase, phenylalanine ammonolyase, and peroxidase ability, indicating a high biocontrol effect. In addition, the application of Bacillus spp. and T. harzianum increased the abundance and diversity of the soil fungal population, improved the soil microbial community structure, and significantly increased the abundance of beneficial strains, such as Holtermanniella and Metarhizium. The abundance of Fusarium, Volutella, and other pathogenic strains was significantly reduced, and the biocontrol potential of A. chinensis root rot was increased. Thus, Bacillus spp. and T. harzianum complex bacteria can be considered potential future biocontrol agents for FRR.

4.
Sci Total Environ ; 900: 165733, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37490945

RESUMO

Soil microbes and enzymes mediate soil carbon-climate feedback, and their responses to increasing temperature partly affect soil carbon stability subjected to the effects of climate change. We performed a 50-month incubation experiment to determine the effect of long-term warming on soil microbes and enzymes involved in carbon cycling along permafrost peatland profile (0-150 cm) and investigated their response to water flooding in the active soil layer. Soil bacteria, fungi, and most enzymes were observed to be sensitive to changes in temperature and water in the permafrost peatland. Bacterial and fungal abundance decreased in the active layer soil but increased in the deepest permafrost layer under warming. The highest decrease in the ratio of soil bacteria to fungi was observed in the deepest permafrost layer under warming. These results indicated that long-term warming promotes recalcitrant carbon loss in permafrost because fungi are more efficient in decomposing high-molecular-weight compounds. Soil microbial catabolic activity measured using Biolog Ecoplates indicated a greater degree of average well color development at 15 °C than at 5 °C. The highest levels of microbial catabolic activity, functional diversity, and carbon substrate utilization were found in the permafrost boundary layer (60-80 cm). Soil polyphenol oxidase that degrades recalcitrant carbon was more sensitive to increases in temperature than ß-glucosidase, N-acetyl-ß-glucosaminidase, and acid phosphatase, which degrade labile carbon. Increasing temperature and water flooding exerted a synergistic effect on the bacterial and fungal abundance and ß-glucosidase, acid phosphatase, and RubisCO activity in the topsoil. Structural equation modeling analysis indicated that soil enzyme activity significantly correlated with ratio of soil bacteria to fungi and microbial catabolic activity. Our results provide valuable insights into the linkage response of soil microorganisms, enzymes to climate change and their feedback to permafrost carbon loss.


Assuntos
Pergelissolo , Pergelissolo/química , Solo/química , Mudança Climática , Bactérias/metabolismo , Água/análise , Carbono/análise , Microbiologia do Solo
5.
Sci Total Environ ; 873: 162338, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813189

RESUMO

Soil microbial responses to environmental stress remain a critical question in microbial ecology. The content of cyclopropane fatty acid (CFA) in cytomembrane has been widely used to evaluate environmental stress on microorganisms. Here, we used CFA to investigate the ecological suitability of microbial communities and found a stimulating impact of CFA on microbial activities during wetland reclamation in Sanjiang Plain, Northeastern China. The seasonality of environmental stress resulted in the fluctuation of CFA content in the soil, which suppressed microbial activities due to nutrient loss upon wetland reclamation. After land conversion, the aggravation of temperature stress to microbes increased the CFA content by 5 % (autumn) to 163 % (winter), which led to the suppression of microbial activities by 7 %-47 %. By contrast, the warmer soil temperature and permeability decreased the CFA content by 3 % to 41 % and consequently aggravated the microbial reduction by 15 %-72 % in spring and summer. Complex microbial communities of 1300 CFA-produced species were identified using a sequencing approach, suggesting that soil nutrients dominated the differentiation in these microbial community structures. Further analysis with structural equation modeling highlighted the important function of CFA content to environmental stress and the stimulating influence of CFA induced by environmental stress on microbial activities. Our study shows the biological mechanisms of seasonal CFA content for microbial adaption to environmental stress under wetland reclamation. It advances our knowledge of microbial physiology affecting soil element cycling caused by anthropogenic activities.


Assuntos
Ácidos Graxos , Microbiologia do Solo , Solo/química , Áreas Alagadas , China
6.
Sci Total Environ ; 869: 161864, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36720397

RESUMO

Mineral protection can slow the effect of warming on the mineralization of organic carbon (OC) in permafrost wetlands, which has an important impact on the dynamics of soil OC. However, the response mechanisms of wetland mineral soil to warming in permafrost areas are unclear. In this study, the soil of the southern edge of the Eurasian permafrost area was selected, and bulk and heavy fraction (HF) soil was subjected to indoor warming incubation experiments using physical fractionation. The results showed that the HF accounted for 51.25 % of the total OC mineralization in the bulk soil, and the δ13C value of the CO2 that was emitted in the HF soil was higher than that of the bulk soil. This indicates the potential availability of mineral soil and that the mineralized OC in the HF was the more stable component. Additionally, the mineralization of the mineral subsoil after warming by 10 °C was only about half of the increase in the organic topsoil, and the temperature sensitivity was significantly negatively correlated with the Fe/Al oxides to OC ratio. The results indicate that under conditions of permafrost degradation, the physical protection of mineral soil at high latitudes is essential for the stability of OC, which may slow the trend of permafrost wetlands becoming carbon sources.

7.
Sci Total Environ ; 860: 160382, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36460111

RESUMO

Semiconducting minerals (such as iron sulfides) are highly abundant in surface water, but their influences on the natural photochemical process of contaminants are still unknown. By simulating the natural water environment under solar irradiation, this work comprehensively investigated the photochemical processes of anthracene (a typical Polycyclic Aromatic Hydrocarbons) in both freshwater and seawater. The results show that the natural pyrite (NP) significantly promotes the degradation of anthracene under solar illumination via 1) NP induced photocatalytic degradation of anthracene, and 2) Fenton reaction due to the NP induced photocatalytic generation of H2O2. The material characterization and theoretical calculation reveal that the natural impurity in NP enlarges its band gap, which limits the utilization of solar spectra to shorter wavelength. The contribution of generated reactive intermediates on anthracene degradation follows the order of 1O2 >OH > O2- in freshwater and O2- >1O2 >OH in seawater. The photochemically generated H2O2 is a vital source for OH generation (from Fenton reaction). The steady-state concentration of OH, 1O2 and O2- in freshwater were monitored as 3.0 × 10-15 M, 1.1 × 10-13 M, and 4.5 × 10-14 M, respectively. However, the OH concentration in seawater can be negligible due to the quenching effects by halides, and the 1O2 and O2- concentrations are higher than that in freshwater. An anthracene degradation kinetic model was built based on the experimentally determined reactive intermediates concentration and its second order rate constant with anthracene. Moreover, the anthracene degradation pathway was proposed based on intermediates analysis and DFT calculation, and its toxicity evolution during the photochemical process was assessed by quantitative structure-activity relationship (QSAR) based prediction. This finding suggests that the natural semiconducting minerals can affect the fate and environmental risks of contaminants in natural water.


Assuntos
Peróxido de Hidrogênio , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Antracenos , Minerais , Água
8.
Environ Sci Ecotechnol ; 13: 100219, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437886

RESUMO

A novel carbon quantum dots decorated C-doped α-Bi2O3 photocatalyst (CBO/CQDs) was synthesized by solvothermal method. The synergistic effect of adsorption and photocatalysis highly improved contaminants removal efficiencies. The ceftriaxone sodium degradation rate constant (k) of CBO/CQDs was 11.4 and 3.2 times that of pure α-Bi2O3 and C-doped α-Bi2O3, respectively. The interstitial carbon doping generated localized states above the valence band, which enhanced the utilization of visible light and facilitated the separation of photogenerated electrons and holes; the loading of CQDs improved the charge carrier separation and extended the visible light response; the reduced particle size of CBO/CQDs accelerated the migration of photogenerated carriers. The •O2 - and h+ were identified as the dominant reactive species in ceftriaxone sodium degradation, and the key role of •O2 - was further investigated by NBT transformation experiments. The Fukui index was applied to ascertain the molecular bonds of ceftriaxone sodium susceptible to radical attack, and intermediates analysis was conducted to explore the possible degradation pathways. The toxicity evaluation revealed that some degradation intermediates possessed high toxicity, thus the contaminants require sufficient mineralization to ensure safe discharge. The present study makes new insights into synchronous carbon dopping and CQDs decoration on modification of α-Bi2O3, which provides references for future studies.

9.
Front Microbiol ; 13: 1093487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583043

RESUMO

Changes in soil CO2 and N2O emissions due to climate change and nitrogen input will result in increased levels of atmospheric CO2 and N2O, thereby feeding back into Earth's climate. Understanding the responses of soil carbon and nitrogen emissions mediated by microbe from permafrost peatland to temperature rising is important for modeling the regional carbon and nitrogen balance. This study conducted a laboratory incubation experiment at 15 and 20°C to observe the impact of increasing temperature on soil CO2 and N2O emissions and soil microbial abundances in permafrost peatland. An NH4NO3 solution was added to soil at a concentration of 50 mg N kg-1 to investigate the effect of nitrogen addition. The results indicated that elevated temperature, available nitrogen, and their combined effects significantly increased CO2 and N2O emissions in permafrost peatland. However, the temperature sensitivities of soil CO2 and N2O emissions were not affected by nitrogen addition. Warming significantly increased the abundances of methanogens, methanotrophs, and nirK-type denitrifiers, and the contents of soil dissolved organic carbon (DOC) and ammonia nitrogen, whereas nirS-type denitrifiers, ß-1,4-glucosidase (ßG), cellobiohydrolase (CBH), and acid phosphatase (AP) activities significantly decreased. Nitrogen addition significantly increased soil nirS-type denitrifiers abundances, ß-1,4-N- acetylglucosaminidase (NAG) activities, and ammonia nitrogen and nitrate nitrogen contents, but significantly reduced bacterial, methanogen abundances, CBH, and AP activities. A rising temperature and nitrogen addition had synergistic effects on soil fungal and methanotroph abundances, NAG activities, and DOC and DON contents. Soil CO2 emissions showed a significantly positive correlation with soil fungal abundances, NAG activities, and ammonia nitrogen and nitrate nitrogen contents. Soil N2O emissions showed positive correlations with soil fungal, methanotroph, and nirK-type denitrifiers abundances, and DOC, ammonia nitrogen, and nitrate contents. These results demonstrate the importance of soil microbes, labile carbon, and nitrogen for regulating soil carbon and nitrogen emissions. The results of this study can assist simulating the effects of global climate change on carbon and nitrogen cycling in permafrost peatlands.

10.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2663-2669, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384600

RESUMO

Northern peatlands are typical nitrogen-limited ecosystems, which are sensitive to global climate change and human activities. The increases of endogenous available nitrogen caused by climate warming and exogenous nitrogen input caused by human activities changed the nitrogen availability of northern peatlands, and would affect carbon and nitrogen cycling and carbon sink function of peatland. Here, we review the influence factors of carbon accumulation rate and carbon sink function in northern peatlands. The effects of nitrogen deposition, freezing and thawing, fire and other factors on nitrogen availability of northern peatlands were reviewed. The responses of plants and soil microorganisms to changes in nitrogen availability were elaborated from carbon fixation and carbon emission processes, respectively. The research related to carbon sink function of peat ecosystems under the influence of glo-bal change was prospected, aiming to help the implementation of the 'double carbon' goal.


Assuntos
Sequestro de Carbono , Nitrogênio , Humanos , Nitrogênio/análise , Ecossistema , Carbono , Solo
11.
Microorganisms ; 10(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35889047

RESUMO

Climate warming affects the carbon cycle of northern peatlands through temperature rises and a changing carbon availability. To clarify the effects of elevated temperature and labile carbon addition on SOC mineralization, as well as their microbial driving mechanisms, topsoil (0-10 cm) and subsoil (10-20 cm) were collected from a peatland in the Great Hing'an Mountains and incubated with or without 13C-glucose at 10 °C and 15 °C for 42 days. The results showed that 5 °C warming significantly stimulated SOC mineralization along with NH4+-N and NO3--N content increases, as well as a decrease in invertase and urease activities. Glucose addition triggered a positive priming effect (PE) in the early stage of the incubation but changed to a negative PE in the late stage of the incubation. Glucose likely regulates carbon dynamics by altering fungi: bacteria, soil invertase, and ß-glucodase activities, and MBC, DOC, NH4+-N contents. Glucose addition increased fungal abundance in 0-10 cm at 10 °C and 15 °C, and 10-20 cm at 10 °C, respectively, but significantly decreased fungal abundance in 10-20 cm at 15 °C. Glucose addition decreased bacterial abundance in 0-10 cm at 10 °C but increased bacterial abundance in 10-20 cm soil at 10 °C, and in 0-10 and 10-20 cm soils at 15 °C, respectively. Glucose addition significantly decreased the fungi: bacteria ratio in 0-20 cm soils at 15 °C. In addition, Q10 was significantly positively correlated with the changes in soil DOC, NH4+-N contents, invertase, and ß-glucosidase activities, while negatively correlated with fungi: bacteria and urease activities after 5 °C of warming, and glucose addition significantly increased the Q10. Labile carbon may decrease carbon losses in northern peatlands that inhibit warming-induced carbon emission increase, thus partially buffering soil carbon content against change.

12.
Sci Total Environ ; 844: 157176, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35803431

RESUMO

As an elemental carbon (C) and nitrogen (N) pool in the world, peatlands are very sensitive to environmental changes. Under global warming, the increase in available N affects the dynamic changes of plant community structure and nutrients in a permafrost peatland. This study was based on a long-term in situ N addition experiment that had been conducted for 9 years. It utilized the peatland in the permafrost area of Great Hing'an Mountain as the research object to analyze the effects of N addition on the growth characteristics, community structure, and nutrient dynamics of peatland plants. The N inputs were N1: 6 g N m-2·year-1, N2: 12 g N m-2·year-1 and N3: 24 g N m-2·year-1, respectively. Our results showed that the adding N can affect the plant community structure of peatland by affecting the plant growth characteristics. The diversity and richness of plant species in the peatland decreased as the concentration of added N increased. The long-term N addition can reduce the N limitation of plants to some extent. Still, it could further aggravate their phosphorus (P) limitation, resulting in the joint limitation of N and P or the complete limitation by P. The N resorption efficiency decreased with the increase of N addition level. The P resorption efficiency of different plants had varied responses to the changes in the N nutrient environment. Our study clarified the impact of long-term N addition on the plant community structure and nutrient dynamics of peatland in a permafrost area and provided an important theoretical basis to accurately evaluate the carbon and nitrogen balance of peatland in a permafrost area owing to future climate change.


Assuntos
Nitrogênio , Pergelissolo , Carbono , Nutrientes , Plantas , Solo/química
13.
Microorganisms ; 9(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34946100

RESUMO

Nitrogen is the limiting nutrient for plant growth in peatland ecosystems. Nitrogen addition significantly affects the plant biomass, diversity and community structure in peatlands. However, the response of belowground microbe to nitrogen addition in peatland ecosystems remains largely unknown. In this study, we performed long-term nitrogen addition experiments in a permafrost peatland in the northwest slope of the Great Xing'an Mountains. The four nitrogen addition treatments applied in this study were 0 g N·m-2·year-1 (CK), 6 g N·m-2·year-1 (N1), 12 g N·m-2·year-1 (N2), and 24 g N·m-2·year-1 (N3). Effects of nitrogen addition over a period of nine growing seasons on the soil microbial abundance and community diversity in permafrost peatland were analyzed. The results showed that the abundances of soil bacteria, fungi, archaea, nitrogen-cycling genes (nifH and b-amoA), and mcrA increased in N1, N2, and N3 treatments compared to CK. This indicated that nitrogen addition promoted microbial decomposition of soil organic matter, nitrogen fixation, ammonia oxidation, nitrification, and methane production. Moreover, nitrogen addition altered the microbial community composition. At the phylum level, the relative abundance of Proteobacteria increased significantly in the N2 treatment. However, the relative abundances of Actinobacteria and Verrucifera in the N2 treatment and Patescibacteria in the N1 treatment decreased significantly. The heatmap showed that the dominant order composition of soil bacteria in N1, N2, and N3 treatments and the CK treatment were different, and the dominant order composition of soil fungi in CK and N3 treatments were different. The N1 treatment showed a significant increase in the Ace and Chao indices of bacteria and Simpson index of fungi. The outcomes of this study suggest that nitrogen addition altered the soil microbial abundance, community structure, and diversity, affecting the soil microbial carbon and nitrogen cycling in permafrost peatland. The results are helpful to understand the microbial mediation on ecological processes in response to N addition.

14.
Sci Total Environ ; 736: 139587, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32492611

RESUMO

Permafrost play an important role in regulating global climate system. We analyzed the gross primary productivity (GPP), net primary productivity (NPP), and evapotranspiration (ET) derived from MODIS and three earth system models participated in the Coupled Model Inter-comparison Project Phase 6 (CMIP6) in the Asian permafrost region. The water use efficiency (WUE) was further computed. The simulated GPP, NPP, and ET show slightly increasing trends during historical period (1900-2014) and strong increasing trends in projection period (2015-2100), and projected impacts of climate change on all variables are greater under high-emission scenarios than low-emission scenarios. Further analysis revealed higher increases in GPP and NPP than that of ET, indicating that vegetation carbon sequestration governs the growing WUE under historical and projected periods in this region. The GPP, NPP and ET showed higher changing rates in western, central and southeast areas of this region, and WUE (WUEGPP, and WUENPP) shows the similar spatial pattern. Compared to MODIS-derived GPP, NPP, and ET during 2000-2014, Earth system models yield the best estimates for NPP, while slight underestimations for GPP and ET, and thus slight overestimations for WUEGPP and WUENPP. This study highlights the predominant role of vegetation activity in regulating regional WUE in Asian permafrost region under future climate change. Vegetation domination of the growing water use efficiency implies that the permafrost region may continue acting efficiently in sequestrating atmospheric carbon in terms of water consumption throughout the 21st century.


Assuntos
Pergelissolo , Ciclo do Carbono , Mudança Climática , Ecossistema , Modelos Teóricos , Água
15.
Sci Total Environ ; 625: 782-791, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306166

RESUMO

Diurnal freeze-thaw cycles (FTCs) occur in the spring and autumn in boreal wetlands as soil temperatures rise above freezing during the day and fall below freezing at night. A surge in methane emissions from these systems is frequently documented during spring FTCs, accounting for a large portion of annual emissions. In boreal wetlands, methane is produced as a result of syntrophic microbial processes, mediated by a consortium of fermenting bacteria and methanogenic archaea. Further research is needed to determine whether FTCs enhance microbial metabolism related to methane production through the cryogenic decomposition of soil organic matter. Previous studies observed large methane emissions during the spring thawed period in the Sanjiang seasonal frozen marsh of Northeast China. To investigate how FTCs impact the soil microbial community and methanogen abundance and activity, we collected soil cores from the Sanjiang marsh during the FTCs of autumn 2014 and spring 2015. Methanogens were investigated based on expression level of the methyl coenzyme reductase (mcrA) gene, and soil bacterial and archaeal community structures were assessed by 16S rRNA gene sequencing. The results show that a decrease in bacteria and methanogens followed autumns FTCs, whereas an increase in bacteria and methanogens was observed following spring FTCs. The bacterial community structure, including Firmicutes and certain Deltaproteobacteria, was changed following autumn FTCs. Temperature and substrate were the primary factors regulating the abundance and composition of the microbial communities during autumn FTCs, whereas no factors significantly contributing to spring FTCs were identified. Acetoclastic methanogens from order Methanosarcinales were the dominant group at the beginning and end of both the autumn and spring FTCs. Active methanogens were significantly more abundant during the diurnal thawed period, indicating that the increasing number of FTCs predicted to occur with global climate change could potentially promote CH4 emissions in seasonal frozen marshes.


Assuntos
Archaea/classificação , Bactérias/classificação , Metano/análise , Estações do Ano , Microbiologia do Solo , Áreas Alagadas , China , Mudança Climática , Temperatura Baixa , Consórcios Microbianos , Filogenia , RNA Ribossômico 16S/genética , Solo
16.
Sci Total Environ ; 625: 640-646, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304502

RESUMO

Nitrogen (N) availability affects litter decomposition and nutrient dynamics, especially in N-limited ecosystems. We investigated the response of litter decomposition to N additions in Eriophorum vaginatum and Vaccinium uliginosum peatlands. These two species dominate peatlands in Northeast China. In 2012, mesh bags containing senesced leaf litter of Eriophorum vaginatum and Vaccinium uliginosum were placed in N addition plots and sprayed monthly for two years with NH4NO3 solution at dose rates of 0, 6, 12, and 24gNm-2year-1 (CK, N1, N2 and N3, respectively). Mass loss, N and phosphorus (P) content, and enzymatic activity were measured over time as litter decomposed. In the control plots, V. uliginosum litter decomposed faster than E. vaginatum litter. N1, N2, and N3 treatments increased the mass losses of V. uliginosum litter by 6%, 9%, and 4% respectively, when compared with control. No significant influence of N additions was found on the decomposition of E. vaginatum litter. However, N and P content in E. vaginatum litter and V. uliginosum litter significantly increased with N additions. Moreover, N additions significantly promoted invertase and ß-glucosidase activity in E. vaginatum and V. uliginosum litter. However, only in V. uliginosum litter was polyphenol oxidase activity significantly enhanced. Our results showed that initial litter quality and polyphenol oxidase activity influence the response of plant litter to N additions in peatland ecosystems. Increased N availability may change peatland soil N and P cycling by enhancing N and P immobilization during litter decomposition.


Assuntos
Cyperaceae/enzimologia , Ecossistema , Nitrogênio/química , Solo/química , Vaccinium/enzimologia , China , Fósforo/química , Folhas de Planta
17.
Sci Total Environ ; 487: 604-10, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24135025

RESUMO

The carbon (C) pool of permafrost peatland is very important for the global C cycle. Little is known about how permafrost thaw could influence C emissions in the Great Hing'an Mountains of China. Through aerobic and anaerobic incubation experiments, we studied the effects of permafrost thaw on CH4 and CO2 emissions. The rates of CH4 and CO2 emissions were measured at -10, 0 and 10°C. Although there were still C emissions below 0°C, rates of CH4 and CO2 emissions significantly increased with permafrost thaw under aerobic and anaerobic conditions. The C release under aerobic conditions was greater than under anaerobic conditions, suggesting that permafrost thaw and resulting soil environment change should be important influences on C emissions. However, CH4 stored in permafrost soils could affect accurate estimation of CH4 emissions from microbial degradation. Calculated Q10 values in the permafrost soils were significantly higher than values in active-layer soils under aerobic conditions. Our results highlight that permafrost soils have greater potential decomposability than soils of the active layer, and such carbon decomposition would be more responsive to the aerobic environment.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Microbiologia do Solo , Solo/química , Aerobiose , Anaerobiose , Ciclo do Carbono , China , Monitoramento Ambiental , Aquecimento Global
18.
Environ Manage ; 50(3): 418-26, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22744158

RESUMO

The extensive reclamation of marshland into cropland has tremendously impacted the ecological environment of the Sanjiang Plain in northeast China. To understand the impacts of marshland reclamation and restoration on soil properties, we investigated the labile organic carbon fractions and the soil enzyme activities in an undisturbed marshland, a cultivated marshland and three marshlands that had been restored for 3, 6 and 12 years. Soil samples collected from the different management systems at a depth of 0-20 cm in July 2009 were analyzed for soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and easily degradable organic carbon. In addition, the activities of the invertase, ß-glucosidase, urease and acid phosphatase were determined. These enzymes are involved in C, N and P cycling, respectively. Long-term cultivation resulted in decreased SOC, DOC, MBC, microbial quotient and C (invertase, ß-glucosidase) and N-transforming (urease) enzyme activities compared with undisturbed marshland. After marshland restoration, the MBC and DOC concentrations and the soil invertase, ß-glucosidase and urease activities increased. Soil DOC and MBC concentrations are probably the main factors responsible for the different invertase, ß-glucosidase and urease activities. In addition, marshland restoration caused a significant increase in the microbial quotient, which reflects enhanced efficiency of organic substrate use by microbial biomass. Our observations demonstrated that soil quality recovered following marshland restoration. DOC, MBC and invertase, ß-glucosidase and urease activities were sensitive for discriminating soil ecosystems under the different types of land use. Thus, these parameters should be considered to be indicators for detecting changes in soil quality and environmental impacts in marshlands.


Assuntos
Carbono/metabolismo , Conservação dos Recursos Naturais , Microbiologia do Solo , Solo/química , Áreas Alagadas , Agricultura , Biomassa , China , Enzimas/metabolismo
19.
Int J Phytoremediation ; 12(3): 217-25, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20734617

RESUMO

Phragmites australis was grown hydroponically in nutrient solutions containing nitrobenzene to examine the potential for treatment of contaminated waters through phytoremediation. The hydroponic solutions and plant tissue were sampled each day during the five day growth period and tested for nitrobenzene. Plant tissue analysis included both rhizome and shoot sections of the plant. The average half lives and disappearance rate of nitrobenzene in the nutrient solution was 1.85 days and 88.10%, respectively. The levels of nitrobenzene in rhizomes and shoots of Phragmites australis increased with higher exogenous concentrations. For the highest treatment, nitrobenzene measurements in the rhizome tissue were much higher than the plant shoots until the third day. Shoot sections initially showed elevated concentrations and then decreased. This variation is presumably due to the translocation of the target compound from the rhizomes to shoots. Our findings indicate that Phragmites australis removed nitrobenzene from the hydroponic solutions and accumulated the compound within the plant tissue. This activity makes Phragmites australis a good candidate species for the phytoremediation of nitrobenzene contaminated waters.


Assuntos
Hidroponia/métodos , Nitrobenzenos/metabolismo , Poaceae/metabolismo , Biodegradação Ambiental , Meia-Vida , Nitrobenzenos/química , Nitrobenzenos/isolamento & purificação , Oxirredução , Brotos de Planta/metabolismo , Rizoma/metabolismo , Soluções
20.
Huan Jing Ke Xue ; 29(5): 1380-7, 2008 May.
Artigo em Chinês | MEDLINE | ID: mdl-18624211

RESUMO

The changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were examined in order to assess the effect of surface layer soil (0 - 10 cm) under different land-use types after freshwater marshes tillage in the Sanjiang Plain Northeast China. Land uses were Deyeuxia angustifolia freshwater marshes ((DAM), cultivated land (CL), recovery freshwater marsh (RFM), constructed woodland (CW). After DAM soil tillage, MBC, MBN, DOC and DON declined strongly in agricultural surface soil layer, decreased 63.8%-80.5% (MBC), 56.3%-67.1% (MBN), 43.1%-44.3% (DOC) and 25.2%-56.1% (DON) respectively. In contrast, these C, N fraction had significant recovered in RFM and CW surface soil, increased 36.1%-59.9% (MBC), 46.7%-65.9% (MBN), 67.0%-69.3% (DOC)and 81.2%-88.3% (DON) respectively. Cultivation and land-use affected soil MBC, MBN, DOC and DON intensely. Therefore these labile C, N fractions have the significant relative under different land-use types. However DOC was more obvious controlled than DON by the land-use types. The relative between DOC and MBC, MBN have much difference than DON, the main reason of this distinction is the diverse source in available carbon and nitrogen that taken by microbial property under different land uses.


Assuntos
Carbono/análise , Água Doce/análise , Nitrogênio/análise , Microbiologia do Solo , Áreas Alagadas , Biomassa , Ecossistema , Água Doce/microbiologia , Poaceae/crescimento & desenvolvimento , Solo/análise , Glycine max/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...