Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(14): 16418-16426, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33818075

RESUMO

In this study, nanocrystals of a cerium-based metal-organic framework (Ce-MOF), Ce-MOF-808, are directly grown on the surface of carboxylic acid-functionalized carbon nanotubes (CNTs) by a facile one-step solvothermal synthesis method. Ce-MOF-CNT nanocomposites with various Ce-MOF-to-CNT ratios are synthesized, and their crystallinity, morphology, porosity, and electrical conductivity are examined. The redox-hopping and electrochemical behaviors of the pristine Ce-MOF in aqueous electrolytes are investigated, suggesting that the pristine Ce-MOF is electrochemically active but possesses a limited charge-transport behavior. As a demonstration, all the Ce-MOF, CNT, and nanocomposites are used as active materials for application in aqueous-based supercapacitors. The capacitive performance of the CNT can be significantly boosted with the help of redox-active Ce-MOF-808 nanocrystals.

2.
Chemistry ; 27(10): 3560-3567, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166095

RESUMO

In this study, a strategy that can result in the polyaniline (PANI) solely confined within the nanopores of a metal-organic framework (MOF) without forming obvious bulk PANI between MOF crystals is developed. A water-stable zirconium-based MOF, UiO-66-NH2 , is selected as the MOF material. The polymerization of aniline is initiated in the acidic suspension of UiO-66-NH2 nanocrystals in the presence of excess poly(sodium 4-styrenesulfonate) (PSS). Since the pore size of UiO-66-NH2 is too small to enable the insertion of the bulky PSS, the quick formation of pore-confined solid PANI and the slower formation of well dispersed PANI:PSS occur within the MOF crystals and in the bulk solution, respectively. By taking advantage of the resulting homogeneous PANI:PSS polymer solution, the bulk PANI:PSS can be removed from the PANI/UiO-66-NH2 solid by successive washing the sample with fresh acidic solutions through centrifugation. As this is the first time reporting the PANI solely confined in the pores of a MOF, as a demonstration, the obtained PANI/UiO-66-NH2 composite material is applied as the electrode material for supercapacitors. The PANI/UiO-66-NH2 thin films exhibit a pseudocapacitive electrochemical characteristic, and their resulting electrochemical activity and charge-storage capacities are remarkably higher than those of the bulk PANI thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA