Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Alzheimers Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38728187

RESUMO

Background: Neuroinflammation plays a crucial part in the initial onset and progression of Alzheimer's disease (AD). NLRP3 inflammasome was demonstrated to get involved in amyloid-ß (Aß)-induced neuroinflammation. However, the mechanism of Aß-triggered activation of NLRP3 inflammasome remains poorly understood. Objective: Based on our previous data, the study aimed to identify the downstream signals that bridge the activation of TLR4 and NLRP3 inflammasome associated with Aß. Methods: BV-2 cells were transfected with TLR4siRNA or pretreated with a CLI-095 or NSC23766, followed by Aß1-42 treatment. APP/PS1 mice were injected intraperitoneally with CLI-095 or NSC23766. NLRP3 inflammasome and microglia activation was detected with immunostaining and western blot. G-LISA and Rac1 pull-down activation test were performed to investigate the activation of Rac1. Real-time PCR and ELISA were used to detect the inflammatory cytokines. Aß plaques were assessed by western blotting and immunofluorescence staining. Morris water maze test was conducted to determine the spatial memory in mice. Results: Rac1 and NLRP3 inflammasome were activated by Aß in both in vitro and in vivo experiments. Inhibition of TLR4 reduced the activity of Rac1 and NLRP3 inflammasome induced by Aß1-42. Furthermore, inhibition of Rac1 blocked NLRP3 inflammasome activation mediated by TLR4. Blocking the pathway by CLI095 or NSC23766 suppressed Aß1-42-triggered activation of microglia, reduced the expression of pro-inflammatory mediators and ameliorated the cognition deficits in APP/PS1 mice. Conclusions: Our study demonstrated that TLR4/Rac1/NLRP3 pathway mediated Aß-induced neuroinflammation, which unveiled a novel pathway and key contributors underlying the pathogenic mechanism of Aß.

2.
Mol Neurobiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780721

RESUMO

Ischemic stroke ranks among the leading causes of death and disability in humans and is accompanied by motor and cognitive impairment. However, the precise mechanisms underlying injury after stroke and effective treatment strategies require further investigation. Peroxiredoxin-1 (PRDX1) triggers an extensive inflammatory cascade that plays a pivotal role in the pathology of ischemic stroke, resulting in severe brain damage from activated microglia. In the present study, we used molecular dynamics simulation and nuclear magnetic resonance to detect the interaction between PRDX1 and a specific interfering peptide. We used behavioral, morphological, and molecular experimental methods to demonstrate the effect of PRDX1-peptide on cerebral ischemia-reperfusion (I/R) in mice and to investigate the related mechanism. We found that PRDX1-peptide bound specifically to PRDX1 and improved motor and cognitive functions in I/R mice. In addition, pretreatment with PRDX1-peptide reduced the infarct area and decreased the number of apoptotic cells in the penumbra. Furthermore, PRDX1-peptide inhibited microglial activation and downregulated proinflammatory cytokines including IL-1ß, IL-6, and TNF-α through inhibition of the TLR4/NF-κB signaling pathway, thereby attenuating ischemic brain injury. Our findings clarify the precise mechanism underlying PRDX1-induced inflammation after ischemic stroke and suggest that the PRDX1-peptide can significantly alleviate the postischemic inflammatory response by interfering with PRDX1 amino acids 70-90 and thereby inhibiting the TLR4/NF-κB signaling pathway. Our study provides a theoretical basis for a new therapeutic strategy to treat ischemic stroke.

3.
Aging Dis ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38421831

RESUMO

The receptor for advanced glycation end products (RAGE) contributes to diabetes-associated cognitive dysfunction (DACD) through the interaction of its C-terminal AAs 2-5 with mitogen-activated protein kinase kinase 3 (MKK3). However, the associated MKK3 binding site is unknown. Here, db/db mice were used as a model for type 2 diabetes. GST pull-down assays and AutoDock Vina simulations were conducted to identify the key RAGE binding site in MKK3. This binding site was mutated to investigate its effects on DACD and to elucidate the underlying mechanisms. The interaction of MKK3 and RAGE, the levels of inflammatory factors, and the activation of microglia and astrocytes were tested. Synaptic morphology and plasticity in hippocampal neurons were assessed via electrophysiological recordings and Golgi staining. Behavioral tests were used to assess cognitive function. In this study, MKK3 bound directly to RAGE via its lysine 329 (K329), leading to the activation of the nuclear factor-κB (NF-κB) signaling pathway, which in turn triggered neuroinflammation and synaptic dysfunction, and ultimately contributed to DACD. MKK3 mutation at K329 reversed synaptic dysfunction and cognitive deficits by downregulating the NF-κB signaling pathway and inhibiting neuroinflammation. These results confirm that neuroinflammation and synaptic dysfunction in the hippocampus rely on the direct binding of MKK3 and RAGE. We conclude that MKK3 K329 binding to C-terminal RAGE (ct-RAGE) is a key mechanism by which neuroinflammation and synaptic dysfunction are induced in the hippocampus. This study presents a novel mechanism for DACD and proposes a novel therapeutic avenue for neuroprotection in DACD.

4.
Int J Biol Macromol ; 260(Pt 1): 129487, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237821

RESUMO

Guanine (G)-rich nucleic acid sequences can form diverse G-quadruplex structures located in functionally significant genome regions, exerting regulatory control over essential biological processes, including DNA replication in vivo. During the initiation of DNA replication, Cdc6 is recruited by the origin recognition complex (ORC) to target specific chromosomal DNA sequences. This study reveals that human Cdc6 interacts with G-quadruplex structure through a distinct region within the N-terminal intrinsically disordered region (IDR), encompassing residues 7-20. The binding region assumes a hook-type conformation, as elucidated by the NMR solution structure in complex with htel21T18. Significantly, mutagenesis and in vivo investigations confirm the highly specific nature of Cdc6's recognition of G-quadruplex. This research enhances our understanding of the fundamental mechanism governing the interaction between G-quadruplex and the N-terminal IDR region of Cdc6, shedding light on the intricate regulation of DNA replication processes.


Assuntos
DNA , Quadruplex G , Humanos , DNA/química , Replicação do DNA , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Sequência de Bases
5.
CNS Neurosci Ther ; 30(3): e14449, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37665158

RESUMO

AIMS: Chronic hyperglycemia-induced inflammation of the hippocampus is an important cause of cognitive deficits in diabetic patients. The receptor for advanced glycation end products (RAGE), which is widely expressed in the hippocampus, is a crucial factor in this inflammation and the associated cognitive deficits. We aimed to reveal the underlying mechanism by which RAGE regulates neuroinflammation in the pathogenesis of diabetes-induced cognitive impairment. METHODS: We used db/db mice as a model for type 2 diabetes to investigate whether receptor-interacting serine/threonine protein kinase 1 (RIPK1), which is expressed in microglia in the hippocampal region, is a key protein partner for RAGE. GST pull-down assays and AutoDock Vina simulations were performed to identify the key structural domain in RAGE that binds to RIPK1. Western blotting, co-immunoprecipitation (Co-IP), and immunofluorescence (IF) were used to detect the levels of key proteins or interaction between RAGE and RIPK1. Cognitive deficits in the mice were assessed with the Morris water maze (MWM) and new object recognition (NOR) and fear-conditioning tests. RESULTS: RAGE binds directly to RIPK1 via the amino acid sequence (AAs) 362-367, thereby upregulating phosphorylation of RIPK1, which results in activation of the NLRP3 inflammasome in microglia and ultimately leads to cognitive impairments in db/db mice. We mutated RAGE AAs 362-367 to reverse neuroinflammation in the hippocampus and improve cognitive function, suggesting that RAGE AAs 362-367 is a key structural domain that binds directly to RIPK1. These results also indicate that hyperglycemia-induced inflammation in the hippocampus is dependent on direct binding of RAGE and RIPK1. CONCLUSION: Direct interaction of RAGE and RIPK1 via AAs 362-367 is an important mechanism for enhanced neuroinflammation in the hyperglycemic environment and is a key node in the development of cognitive deficits in diabetes.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Camundongos , Cognição , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Hiperglicemia/complicações , Inflamação , Doenças Neuroinflamatórias , Receptor para Produtos Finais de Glicação Avançada/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
6.
J Mol Med (Berl) ; 102(2): 231-245, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051341

RESUMO

Ischemic stroke is a devastative nervous system disease associated with high mortality and morbidity rates. Unfortunately, no clinically effective neuroprotective drugs are available now. In ischemic stroke, S100 calcium-binding protein b (S100b) binds to receptor for advanced glycation end products (Rage), leading to the neurological injury. Therefore, disruption of the interaction between S100B and Rage can rescue neuronal cells. Here, we designed a peptide, termed TAT-W61, derived from the V domain of Rage which can recognize S100b. Intriguingly, TAT-W61 can reduce the inflammatory caused by ischemic stroke through the direct binding to S100b. The further investigation demonstrated that TAT-W61 can improve pathological infarct volume and reduce the apoptotic rate. Particularly, TAT-W61 significantly improved the learning ability, memory, and motor dysfunction of the mouse in the ischemic stroke model. Our study provides a mechanistic insight into the abnormal expression of S100b and Rage in ischemic stroke and yields an invaluable candidate for the development of drugs in tackling ischemic stroke. KEY MESSAGES: S100b expression is higher in ischemic stroke, in association with a high expression of many genes, especially of Rage. S100b is directly bound to the V-domain of Rage. Blocking the binding of S100b to Rage improves the injury after ischemic stroke.


Assuntos
AVC Isquêmico , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada , AVC Isquêmico/patologia , Neurônios , Peptídeos/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia
7.
Gene ; 845: 146776, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063972

RESUMO

Mutations in the mitochondrial DNA (mtDNA) are closely related to age and age-related complex diseases, but the exact regulatory mechanism of mtDNA natural variation or polymorphism and ageing remains unclear. Recently, nuclear genes that regulate mitochondrial functions and thereby influence ageing have been widely studied. In this study, the relationship between the retrograde communication from the mitochondria to the nucleus and its ultimate effect on ageing has been elucidated. This study found that the natural variations in COX1 of the mitochondria in the Caenorhabditis elegans population do not correlate with multiple phenotypes, except for a mild correlation with lifespan. After excluding the differences in the nuclear genome, the correlation between natural mitochondrial variation and lifespan increased significantly. Moreover, mtDNA variation downregulated the nuclear dct-15 gene expression, which consequently reduced the lifespan, development rate and motility of C. elegans. dct-15 mutations decreased mitochondria copy number but increased ATP content and mitochondrial ultrastructure. Thus, the results indicated that dct-15 interacted with the mitochondrial DNA polymorphisms in COX1 and is associated with ageing. Finally, bioinformatic analyses revealed that mtDNA variation regulated the structural constituent of the cuticle via dct-15 and suggested that the structural constituent of the cuticle could have an important role in the development and ageing processes. These results provide insights into the mtDNA mechanism that can alter the nuclear gene and thereby regulate ageing and ageing-related diseases.


Assuntos
Caenorhabditis elegans , DNA Mitocondrial , Trifosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Longevidade/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo
8.
Front Microbiol ; 13: 798917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283843

RESUMO

Many studies shown that neurological diseases are associated with neural mitochondrial dysfunctions and microbiome composition alterations. Since mitochondria emerged from bacterial ancestors during endosymbiosis, mitochondria, and bacteria had analogous genomic characteristics, similar bioactive compounds and comparable energy metabolism pathways. Therefore, it is necessary to rationalize the interactions of intestinal microbiota with neural mitochondria. Recent studies have identified neural mitochondrial dysfunction as a critical pathogenic factor for the onset and progress of multiple neurological disorders, in which the non-negligible role of altered gut flora composition was increasingly noticed. Here, we proposed a new perspective of intestinal microbiota - neural mitochondria interaction as a communicating channel from gut to brain, which could help to extend the vision of gut-brain axis regulation and provide additional research directions on treatment and prevention of responsive neurological disorders.

9.
Aging Cell ; 21(2): e13543, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35080104

RESUMO

In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)-mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull-down assays to assess the interaction between RAGE and mitogen-activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3-MKK3-p38 signaling module. Mechanistically, we found that activation of p38 mitogen-activated protein kinase (MAPK)/NF-κB signaling depends on mediation of the RAGE-MKK3 interaction by C-terminal RAGE (ctRAGE) amino acids (AAs) 2-5. We found that ctRAGE R2A-K3A-R4A-Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE-MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2-5, which leads to assembly of the MEKK3-MKK3-p38 signaling module and subsequent activation of the p38MAPK/NF-κB pathway, and ultimately results in diabetic encephalopathy (DE).


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , MAP Quinase Quinase 3 , MAP Quinase Quinase Quinase 3 , Receptor para Produtos Finais de Glicação Avançada , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Cognição , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Camundongos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Front Physiol ; 12: 679166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194338

RESUMO

Ras-related C3 botulinum toxin substrate 1 (RAC1) activation plays a vital role in diabetic nephropathy (DN), but the exact mechanism remains unclear. In this study, we attempted to elucidate the precise mechanism of how RAC1 aggravates DN through cellular and animal experiments. In this study, DN was induced in mice by intraperitoneal injection of streptozotocin (STZ, 150mg/kg), and the RAC1 inhibitor NSC23766 was administered by tail vein injection. Biochemical indicators, cell proliferation and apoptosis, and morphological changes in the kidney were detected. The expression of phosphorylated c-Jun N-terminal kinase (p-JNK), nuclear factor-κB (NF-κB), and cleaved caspase-3 and the interaction between RAC1 and the mixed lineage kinase 3 (MLK3)-mitogen-activated protein kinase 7 (MKK7)-JNK signaling module were determined. Furthermore, the colocalization and direct co-interaction of RAC1 and MLK3 were confirmed. Our results showed that RAC1 accelerates renal damage and increases the expression of p-JNK, NF-κB, and cleaved caspase-3. However, inhibition of RAC1 ameliorated DN by downregulating p-JNK, NF-κB, and cleaved caspase-3. Also, RAC1 promoted the assembly of MLK3-MKK7-JNK, and NSC23766 blocked the interaction between RAC1 and MLK3-MKK7-JNK and inhibited the assembly of the MLK3-MKK7-JNK signaling module. Furthermore, RAC1 was combined with MLK3 directly, but the RAC1 Y40C mutant inhibited the interaction between RAC1 and MLK3. We demonstrated that RAC1 combining with MLK3 activates the MLK3-MKK7-JNK signaling module, accelerating DN occurrence and development, and RAC1 Y40 is an important site for binding of RAC1 to MLK3. This study illustrates the cellular and molecular mechanisms of how RAC1 accelerates DN and provides evidence of DN-targeted therapy.

11.
Clin Rheumatol ; 40(10): 3919-3927, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33966169

RESUMO

OBJECTIVE: To investigate the relationship between systemic inflammatory response index (SIRI) and ischemic stroke (IS) in rheumatoid arthritis (RA) patients. METHODS: Fifty-two RA patients with IS, who were admitted to Wujin Hospital Affiliated with Jiangsu University between 2015 and 2019, were selected as the study group, and 236 RA patients without IS were selected as the control group. Propensity score matching (PSM) function of SPSS 26.0 was used to carry out 1:1 propensity score matching for gender, age, blood pressure, blood glucose, blood lipid, and smoking history of patients in the two groups, and the caliper value was set as 0.02 to obtain covariate balanced samples between groups. When performing blood tests, the following are determined: rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), mean platelet volume (MPV), calculated SIRI = (neutrophil × monocyte)/lymphocyte, and completed 28-joint disease activity score (DAS28-CRP). The differences in inflammatory markers between the two groups were compared, the independent risk factors were analyzed by logistic regression, and the auxiliary diagnostic value was evaluated by the receiver operating characteristic (ROC) curve. RESULTS: A total of 48 pairs of patients were successfully matched. SIRI in the study group was higher than that in the control group (p < 0.05), and the mean platelet volume (MPV) was lower in the study group than in the control group (p < 0.05). SIRI, DAS28-CRP (r = 0.508, p < 0.01), ESR (r = 0.359, p < 0.05), and CRP (r = 0.473, p < 0.01) were positively correlated. Logistic regression analysis showed that SIRI was an independent IS risk factor in RA patients (odds ratio, 1.30; 95% confidence interval, approximately 1.008-1.678). The optimal threshold for SIRI-assisted diagnosis of patients with RA and IS was 1.62, the area under the ROC curve was 0.721 (p < 0.01), sensitivity was 54.17%, and specificity was 83.33%. CONCLUSION: SIRI was independently associated with the occurrence of ischemic stroke in patients with RA. Thus, RA patients with elevated SIRI should be closely monitored. Key points • RA patients with IS had fewer traditional risk factors such as hypertension and diabetes, while inflammatory indicators were significantly increased. • The SIRI have drawn attention in recent years as novel non-specific inflammatory markers. However, only a few studies have been conducted to investigate their value in RA. • This study completes the gaps in the research on the relationship between SIRI and the risk of IS occurrence in RA patients.


Assuntos
Artrite Reumatoide , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Artrite Reumatoide/complicações , Biomarcadores , Sedimentação Sanguínea , Isquemia Encefálica/complicações , Isquemia Encefálica/epidemiologia , Proteína C-Reativa/análise , Humanos , Pontuação de Propensão , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Síndrome de Resposta Inflamatória Sistêmica
12.
Drug Dev Res ; 82(4): 494-502, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33458836

RESUMO

The central nervous system (CNS) regulates and coordinates an extensive array of complex processes requiring harmonious regulation of specific genes. CNS disorders represent a large burden on society and cause enormous disability and economic losses. Traditional Chinese medicine (TCM) has been used for many years in the treatment of neurological illnesses, such as Alzheimer's disease, Parkinson's disease, stroke, and depression, as the combination of TCM and Western medicine has superior therapeutic efficacy and minimal toxic side effects. Mangiferin (MGF) is an active compound of the traditional Chinese herb rhizome anemarrhenae, which has antioxidant, anti-inflammation, anti-lipid peroxidation, immunomodulatory, and anti-apoptotic functions in the CNS. MGF has been demonstrated to have therapeutic effects in CNS diseases through a multitude of mechanisms. This review outlines the latest research on the neuroprotective ability of MGF and the diverse molecular mechanisms involved.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Xantonas/farmacologia , Animais , Humanos , Transdução de Sinais
13.
Neurosci Lett ; 736: 135279, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32726591

RESUMO

Beta-amyloid(Aß)-induced inflammation plays a critical role in the pathogenesis of Alzheimer's disease (AD). Nod-like receptor nucleotide-binding domain leucine rich repeat containing protein 3 (NLRP3) inflammasome is involved in the Aß-induced inflammation. However, the mechanisms by which extracellular Aß activates cytoplasmic NLRP3 inflammasome are poorly understood. Toll-like receptor 4(TLR4) acts as a sensor of Aß and performs a key role in neuroinflammation. TLR4 is involved in activating the NLRP3 inflammasome in several diseases. In this study, the interaction between TLR4 and NLRP3 inflammasome in Aß1-42-induced neuroinflammation was investigated. BV-2 microglia and primary microglia were primed with lipopolysaccharide (LPS) and then pretreated with TLR4 inhibitor CLI-095, followed by stimulation with Aß1-42. The protein expression of NLRP3, the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC), and caspase-1 p 10 was detected by western blotting and immunostaining. The mRNA expression of inflammatory factors was measured by real-time PCR. The protein level of pro IL-1ß and IL-1ß was examined by ELISA. Activated microglia were examined by immunofluorescence staining for ionized calcium-binding adapter molecule-1 (Iba-1). Conditioned medium of BV-2 cells was collected to challenge HT-22 neurons. Cell viability was assessed with MTT assay. Assessment of HT-22 cell apoptosis was performed by Annexin V/PI staining and western blotting to detect the protein level of cleaved caspase 3. The results showed that Aß1-42 activated and up-regulated the expression of NLRP3 inflammasome in BV-2 microglia, as indicated by increased activation of caspase-1 and secretion of IL-1ß. Pharmacological inhibition of TLR4 by CLI-095 abolished Aß1-42-induced NLRP3 inflammasome activation, which curbed the development of inflammation and exerted protective effect on HT-22 neurons. Furthermore, the inhibitory effects of CLI-095 on Aß1-42-induced inflammation were reversed by NLRP3 activator ATP. Overall, our findings suggested TLR4 mediated Aß1-42-induced NLRP3 inflammasome activation in mouse microglia. TLR4/NLRP3 pathway plays a critical role in Aß1-42-induced neuroinflammation.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Inflamassomos/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Metab Brain Dis ; 35(4): 661-672, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32152798

RESUMO

Neuroinflammation can cause multiple neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Recent studies have shown that the artemisinin derivative dihydroartemisinin (DHA) can be used as an immunomodulatory, anti-inflammatory and anti-tumor agent. The anti-neuroinflammatory effects of DHA were evaluated in our study, and the underlying mechanisms were explored using the Morris water maze test (MWMT), Open-field test (OFT) and Closed-field test (CFT), Elevated plus maze test (EPMT), Nissl Staining, Immunofluorescence analysis, RT-PCR, and Western Blot. Our results show that DHA significantly inhibits LPS-induced inflammation and attenuates LPS-induced behavioral and memory disorders. 1. Behavioral test results: 1) in the water maze test, the mice in the LPS group showed increased escape latency and length of the movement path on the third day; they also had a decreased number of crossings of the target quadrant after the platform was removed on the 5th day and remained in the target quadrant for less time; 2) in the open- and closed-field experiment, the number of activities and activities in the open-field were significantly reduced; 3) in the elevated cross maze experiment, LPS-treated mice exhibited a significant reduction in the number of times and the time to enter the open arm; the above behavior was reversed after DHA treatment. 2. Nissl staining results: compared with the Control group, the LPS group showed significant damage, and the number of damaged cells in the hippocampal CA1, CA2, CA3 and DG regions was increased; DHA treatment reduced cell damage. 3. RT-PCR results: compared with the Control group, the LPS group showed increased expression of IL-1ß and IL-6 but decreased expression after DHA treatment. 4. GFAP fluorescent staining: compared with the control group, the corresponding reactivity of positive cells in the LPS-induced group was increased in the CA1-CA3 and DG regions of the hippocampus; compared with the LPS-induced mice, cells in the LPS + DHA group showed significantly reduced reactivity (GFAP). 5. Western blot results: compared with the Control group, the LPS group showed increased expression of P-PI3K/PI3K, P-AKT/AKT, IL-6 and TNFα and a decreased expression of P-PI3K/PI3K, IL-6, TNF and P-AKT/AKT after DHA treatment. Our findings provide direct evidence for the potential use of DHA in the treatment of neuroinflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Artemisininas/farmacologia , Inflamação/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Artemisininas/uso terapêutico , Citocinas/metabolismo , Hipocampo/efeitos dos fármacos , Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo
15.
Behav Brain Res ; 384: 112520, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32006563

RESUMO

Cerebral ischemia/reperfusion (I/R) injury is a leading cause of learning and memory dysfunction. Hydrogen sulfide (H2S) has been shown to confer neuroprotection in various neurodegenerative diseases, including cerebral I/R-induced hippocampal CA1 injury. However, the underlying mechanisms have not been completely understood. In the present study, rats were pretreated with SAM/NaHS (SAM, an H2S agonist, and NaHS, an H2S donor) only or SAM/NaHS combined with CaM (an activator of CaMKII) prior to cerebral ischemia. The Morris water maze test demonstrated that SAM/NaHS could alleviate learning and memory impairment induced by cerebral I/R injury. Cresyl violet staining was used to show the survival of hippocampal CA1 pyramidal neurons. SAM/NaHS significantly increased the number of surviving cells, whereas CaM weakened the protection induced by SAM/NaHS. The immunohistochemistry results indicated that the number of Iba1-positive microglia significantly increased after cerebral I/R. Compared with the I/R group, the number of Iba1-positive microglia in the SAM/NaHS groups significantly decreased. Co-Immunoprecipitation and immunoblotting were conducted to demonstrate that SAM/NaHS suppressed the assembly of CaMKII with the ASK1-MKK3-p38 signal module after cerebral I/R, which decreased the phosphorylation of p38. In contrast, CaM significantly inhibited the effects of SAM/NaHS. Taken together, the results suggested that SAM/NaHS could suppress cerebral I/R injury by downregulating p38 phosphorylation via decreasing the assembly of CaMKII with the ASK1-MKK3-p38 signal module.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Calmodulina/farmacologia , Sulfeto de Hidrogênio/metabolismo , AVC Isquêmico/metabolismo , Transtornos da Memória/metabolismo , Traumatismo por Reperfusão/metabolismo , S-Adenosilmetionina/farmacologia , Sulfetos/farmacologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Regulação para Baixo , AVC Isquêmico/fisiopatologia , Aprendizagem/efeitos dos fármacos , MAP Quinase Quinase 3/efeitos dos fármacos , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinase 5/efeitos dos fármacos , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/fisiopatologia , Proteínas dos Microfilamentos/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Teste do Labirinto Aquático de Morris , Fosforilação , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Traumatismo por Reperfusão/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Aging (Albany NY) ; 12(3): 2453-2470, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019902

RESUMO

Recently, mitochondrial-nuclear interaction in aging has been widely studied. However, the nuclear genome controlled by natural mitochondrial variations that influence aging has not been comprehensively understood so far. We hypothesized that mitochondrial polymorphisms could play critical roles in the aging process, probably by regulation of the whole-transcriptome expression. Our results showed that mitochondria polymorphisms not only decreased the mitochondrial mass but also miRNA, lncRNA, mRNA, circRNA and metabolite profiles. Furthermore, most genes that are associated with mitochondria show age-related expression features (P = 3.58E-35). We also constructed a differentially expressed circRNA-lncRNA-miRNA-mRNA regulatory network and a ceRNA network affected by the mitochondrial variations. In addition, Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the genes affected by the mitochondrial variation were enriched in metabolic activity. We finally constructed a multi-level regulatory network with aging which affected by the mitochondrial variation in Caenorhabditis elegans. The interactions between these genes and metabolites have great values for further aging research. In sum, our findings provide new evidence for understanding the molecular mechanisms of how mitochondria influence aging.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/genética , Ciclo-Oxigenase 1/genética , DNA Mitocondrial/genética , Longevidade/genética , Transcriptoma/genética , Animais , Regulação da Expressão Gênica , Polimorfismo Genético , RNA/genética
17.
Front Chem ; 7: 732, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31788467

RESUMO

An amphiphilic and bioactive calix[4]arene derivative 8 (CA) is designed and successfully synthesized from tert-butyl calix[4] arene 1 by sequential inverse F-C alkylation, nitration, O-alkylation, esterification, aminolysis, reduction, and acylation reaction. The blank micelles of FA-CA and doxorubicin (DOX) loaded micelles FA-CA-DOX are prepared subsequently undergoing self-assembly and dialysis of CA and DSPE-PEG2000-FA. The drug release kinetics curve of the encapsulated-DOX micelle demonstrates a rapid release under mild conditions, indicating the good pH-responsive ability. Furthermore, the cytotoxicity of DOX-loaded micelle respect to the blank micelle against seven different human carcinoma (A549, HeLa, HepG2, HCT116, MCF-7, MDA-MB231, and SW480) cells has been also investigated. The results confirm the more significant inhibitory effect of DOX-loaded micelle than those of DOX and the blank micelles. The CDI calculations show a synergistic effect between blank micelles and DOX in inducing tumor cell death. In conclusion, FA-CA micelles reported in this work was a promising drug delivery vehicle for tumor targeting therapy.

18.
Pharm Biol ; 57(1): 263-268, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31124385

RESUMO

Context: Researchers in a variety of fields have extensively focused on histone deacetylase 6 (HDAC6) due to its aggravation of inflammatory reaction. However, relevant studies examining whether HDAC6 could exacerbate lipopolysaccharide (LPS)-induced inflammation are still lacking. Objective: We assessed the role of HDAC6 in LPS-induced brain inflammation and used the HDAC6-selective inhibitor Tubastatin A (TBSA) to investigate the potential mechanisms further. Materials and methods: Brain inflammation was induced in Kunming (KM) mice via intraperitoneal (I.P.), injection of Lipopolysaccharide (LPS) (1 mg/kg), the TBSA (0.5 mg/kg) was delivered via intraperitoneal. The phosphorylated p38 (p-p38) Mitogen-activated protein kinases (MAPK) and expression of typical inflammatory mediators, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in both the hippocampus and cortex, were examined by immunoblotting. Nissl staining was used to detect the neuronal damage in the hippocampus and the cortex. Results: About 1 mg/kg LPS via daily intraperitoneal (I.P.) injections for 12 days significantly increased p38 MAPK phosphorylation, TNF-α and IL-6 expression, and neuronal loss. However, 0.5 mg/kg TBSA (three days before LPS treatment) by I.P. injections for 15 days could reverse the above results. Conclusions: This present study provided evidence that TBSA significantly suppressed LPS-induced neuroinflammation and the expression of p-p38. Results derived from our study might help reveal the effective targeting strategies of LPS-induced brain inflammation through inhibiting HDAC6.


Assuntos
Encefalite/prevenção & controle , Inibidores Enzimáticos/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Lipopolissacarídeos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Modelos Animais de Doenças , Encefalite/enzimologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos , Fosforilação
19.
Front Genet ; 10: 28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778368

RESUMO

Previous studies have found that fecundity is a multigenic trait regulated, in part, by mitochondrial-nuclear (mit-n) genetic interactions. However, the identification of specific nuclear genetic loci or genes interacting with the mitochondrial genome and contributing to the quantitative trait fecundity is an unsolved issue. Here, a panel of recombinant inbred advanced intercrossed lines (RIAILs), established from a cross between the N2 and CB4856 strains of C. elegans, were used to characterize the underlying genetic basis of mit-n genetic interactions related to fecundity. Sixty-seven single nucleotide polymorphisms (SNPs) were identified by association mapping to be linked with fecundity among 115 SNPs linked to mitotype. This indicated significant epistatic effects between nuclear and mitochondria genetics on fecundity. In addition, two specific nuclear genetic loci interacting with the mitochondrial genome and contributing to fecundity were identified. A significant reduction in fecundity was observed in the RIAILs that carried CB4856 mitochondria and a N2 genotype at locus 1 or a CB4856 genotype at locus 2 relative to the wild-type strains. Then, a hybrid strain (CNC10) was established, which was bred as homoplasmic for the CB4856 mtDNA genome and N2 genotype at locus 1 in the CB4856 nuclear background. The mean fecundity of CNC10 was half the fecundity of the control strain. Several functional characteristics of the mitochondria in CNC10 were also influenced by mit-n interactions. Overall, experimental evidence was presented that specific nuclear genetic loci or genes have interactions with the mitochondrial genome and are associated with fecundity. In total, 18 genes were identified using integrative approaches to have interactions with the mitochondrial genome and to contribute to fecundity.

20.
Immunopharmacol Immunotoxicol ; 41(1): 86-94, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30604645

RESUMO

Background: Accumulating evidence suggests that inflammation is a contributor to the cause and progression of neurodegenerative disease, such as Alzheimer's disease (AD) and Parkinson disease (PD). However, the exact mechanisms of neuroinflammation are still unclear. Here, we discussed the potential mechanisms of lipopolysaccharide (LPS)-induced brain injury via NR2B antagonists (Ro25-6981) treatment in mice. Methods: Neuroinflammation was induced in mice by virtue of LPS (1 mg/kg) by intraperitoneal injection. Immunoprecipitation was performed to measure the assembly of NR2B-calmodulin dependent protein kinase II (CaMKII)-Postsynaptic density protein 95 (PSD95) signal module in the hippocampus and frontal cortex. Nissl's staining was employed to access neuron injury in the brain. Results: Data demonstrated that LPS could induce neuron damage, and promote the assembly of NR2B-CaMKII-PSD95 signal module and increase the expression of phosphorylated CaMKII and c-Jun N-terminal kinase (JNK) in the frontal cortex and hippocampus. However, NR2B antagonists could protect neuron injury against LPS-induced inflammation, inhibit the assembly of NR2B-CaMKII-PSD95 signal module and decrease the level of phosphorylated CaMKII and JNKs in mice. Conclusions: These findings indicated that the assembly of NR2B-CaMKII-PSD95 signal module is related to LPS-induced neuroinflammation, NR2B plays a key role in the assembly of NR2B-CaMKII-PSD95 signal module and NR2B antagonists could alleviate LPS-related inflammation through the reduced assembly of NR2B-CaMKII-PSD95 signal module in frontal cortex and hippocampus.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Fenóis/farmacologia , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Lobo Frontal/imunologia , Lobo Frontal/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...