Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(11): e2306911, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38196300

RESUMO

Metal-organic frameworks (MOF) derived nitrogen-doped carbon-supported monodisperse Fe (Fe-N-C) catalysts are intensively studied, but great challenges remain in understanding the relationship between the coordination structure and the performance of Fe-N-C nanozymes. Herein, a novel nanocluster ligand-bridging strategy is proposed for constructing Fe-S1 N4 structures with axially coordinated S and Au nanoclusters on ZIF-8 derived Fe-N-C (labeled Aux /Fe-S1 N4 -C). The axial Au nanoclusters facilitate electron transfer to Fe active sites, utilizing the bridging ligand S as a medium, thereby enhancing the oxygen adsorption capacity of composite nanozymes. Compared to Fe-N-C, Aux /Fe-S1 N4 -C exhibits high oxidase-like specificity and activity, and holds great potential for detecting acetylcholinesterase activity with a detection limit of 5.1 µU mL-1 , surpassing most reported nanozymes.


Assuntos
Ouro , Oxirredutases , Acetilcolinesterase , Ouro/química , Ligantes
2.
Small ; 18(51): e2204924, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36336642

RESUMO

Water oxidation is one of the most challenging steps in CO2 photoreduction, but its influence on CO2 photoreduction is still poorly understood. Herein, the concept of accelerating the water oxidation kinetics to promote the CO2 photoreduction is realized by incorporating supramolecular porphyrin nanosheets (NS) into the C3 N4 catalyst. As a prototype, porphyrin-C3 N4 based van der Waals heterojunctions with efficient charge separation are elaborately designed, in which the porphyrin and C3 N4 NS serve as the water oxidation booster and CO2 reduction center, respectively. Theoretical calculations and relevant experiments demonstrate that the added porphyrin NS reverses the rate-limiting step in the water oxidation while reducing its energy barrier, thus resulting in faster reaction kinetics. Therefore, the optimal sample shows excellent performance in visible-light-driven CO2 reduction with a maximum CO evolution rate of 16.8 µmol g-1 h-1 , which is 6.8 times that of the C3 N4 NS and reaches the current state of the art for C3 N4 -based materials in CO2 photoreduction. Overall, this work throws light that accelerating water oxidation kinetics can effectively improve the CO2 photoreduction efficiency.

3.
Talanta ; 242: 123299, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183982

RESUMO

Research of detection of low molecular weight compounds on human health and biological systems become increasingly important. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), a soft ionization equipment, is a rapid, reliable, high-sensitivity, high-throughput and simple test instrument. However, the application of MALDI-TOF MS in the analysis of small molecules (<500 Da) has become a great challenge because of the interference from the conventional matrices in low mass region when using conventional matrices. In this research, tricobalt tetraoxide (Co3O4) nanocrystals with rich surface hydroxyl groups were synthesized and served as novel matrices for the detection of small molecules by MALDI-TOF MS. In comparison with conventional organic matrices, the use of as-prepared Co3O4 nanocrystal matrices showed little matrix background interference, good reproducibility and high signal intensity in the analyses of amino acids, harmful additives and pesticide residues. For the detection of most amino acids, Co3O4 nanocrystal matrices have good detection performance both in the positive and negative ion modes and have a unique decarboxylation peak in the positive ion mode, which is conducive to the identification of amino acids. In addition, Co3O4 nanocrystals are completely feasible to test triadimefon, pirimicarb and other pesticide residues, as well as additives such as bisphenol A and melamine in the positive ion mode. It is also feasible to detect small molecule compounds in practical samples using Co3O4 nanocrystals as matrices. We believe the work provides an alternative approach for the detection of small molecules and expands the application scope of Co3O4 nanocrystals.


Assuntos
Nanopartículas , Resíduos de Praguicidas , Aminoácidos , Cobalto , Humanos , Óxidos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
Nanoscale ; 12(36): 18790-18799, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32970071

RESUMO

Magnetic particle/carbon hybrid structures are promising candidates for high performance microwave absorbing materials with light weight and strong absorption. However, it remains a great challenge to balance the permittivity and permeability to realize impedance matching and further improve their absorption bandwidth. Herein, an effective strategy is designed to fabricate sandwich-like Co15Fe85@C/RGO composites. By introducing RGO sheets in the hybrid structures, the electromagnetic parameters, impedance matching and microwave absorption properties of the final materials can be well controlled. The optimized Co15Fe85@C/RGO composite shows an excellent microwave absorption performance, the strongest reflection loss (RL) of the sample is up to -33.38 dB at 10.72 GHz with a matching thickness of 2.5 mm, and the effective bandwidth (RL < -10 dB) can reach 9.2 GHz (8.64-17.84 GHz). With a single thickness, such a wide absorption band is rarely reported. Their excellent performance can be ascribed to the synergetic effect of the chemical composition and unique sandwich-like structures, which will improve impendence matching and strong microwave attenuation constants of the composites. Our results provide a facile strategy for tuning the electromagnetic parameters and microwave absorption properties of magnetic metal/carbon hybrid structures.

5.
Chem Commun (Camb) ; 52(86): 12765-12768, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27725971

RESUMO

High silica zeolite Y with a SiO2/Al2O3 ratio of 7.76 is successfully synthesized with tetraethylammonium hydroxide (TEAOH) as a structure-directing agent. The high silica zeolite Y shows outstanding high temperature thermal stability and hydrothermal stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA