Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 902-911, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621897

RESUMO

Alzheimer's disease(AD), vascular dementia(VD), and traumatic brain injury(TBI) are more common cognitive impairment diseases characterized by high disability and mortality rates, imposing a heavy burden on individuals and their families. Although AD, VD, and TBI have different specific mechanisms, their pathogenesis is closely related to the nucleotide-binding oligome-rization domain-like receptor protein 3(NLRP3). The NLRP3 inflammasome is involved in neuroinflammatory responses, mediating microglial polarization, regulating the reduction of amyloid ß-protein(Aß) deposition, neurofibrillary tangles(NFTs) formation, autophagy regulation, and maintaining brain homeostasis, and synaptic stability, thereby contributing to the development of AD, VD, and TBI. Previous studies have shown that traditional Chinese medicine(TCM) can alleviate neuroinflammation, promote microglial polarization towards the M2 phenotype, reduce Aß deposition and NFTs formation, regulate autophagy, and maintain brain homeostasis by intervening in NLRP3 inflammasome, hence exerting a role in preventing and treating cognitive impairment-related diseases, reducing psychological and economic pressure on patients, and improving their quality of life. Therefore, this article elucidated the role of NLRP3 inflammasome in AD, VS, and TBI, and provided a detailed summary of the latest research results on TCM intervention in NLRP3 inflammasome for the prevention and treatment of these diseases, aiming to inherit the essence of TCM and provide references and foundations for clinical prevention and treatment of cognitive impairment-related diseases with TCM. Meanwhile, this also offers insights and directions for further research in TCM for the prevention and treatment of cognitive impairment-related diseases.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos beta-Amiloides/metabolismo , Medicina Tradicional Chinesa , Qualidade de Vida , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle
2.
J Nanobiotechnology ; 19(1): 396, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838052

RESUMO

BACKGROUND: A recent study has reported that patients with nonalcoholic fatty liver disease (NAFLD) are more susceptible to coronary microvascular dysfunction (CMD), which may predict major adverse cardiac events. However, little is known regarding the causes of CMD during NAFLD. In this study, we aimed to explore the role of hepatic small extracellular vesicles (sEVs) in regulating the endothelial dysfunction of coronary microvessels during NAFLD. RESULTS: We established two murine NAFLD models by feeding mice a methionine-choline-deficient (MCD) diet for 4 weeks or a high-fat diet (HFD) for 16 weeks. We found that the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-dependent endothelial hyperpermeability occurred in coronary microvessels during both MCD diet and HFD-induced NAFLD. The in vivo and in vitro experiments proved that novel-microRNA(miR)-7-abundant hepatic sEVs were responsible for NLRP3 inflammasome-dependent endothelial barrier dysfunction. Mechanistically, novel-miR-7 directly targeted lysosomal associated membrane protein 1 (LAMP1) and promotes lysosomal membrane permeability (LMP), which in turn induced Cathepsin B-dependent NLRP3 inflammasome activation and microvascular endothelial hyperpermeability. Conversely, a specific novel-miR-7 inhibitor markedly improved endothelial barrier integrity. Finally, we proved that steatotic hepatocyte was a significant source of novel-miR-7-contained hepatic sEVs, and steatotic hepatocyte-derived sEVs were able to promote NLRP3 inflammasome-dependent microvascular endothelial hyperpermeability through novel-miR-7. CONCLUSIONS: Hepatic sEVs contribute to endothelial hyperpermeability in coronary microvessels by delivering novel-miR-7 and targeting the LAMP1/Cathepsin B/NLRP3 inflammasome axis during NAFLD. Our study brings new insights into the liver-to-microvessel cross-talk and may provide a new diagnostic biomarker and treatment target for microvascular complications of NAFLD.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Vesículas Extracelulares , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica , Animais , Extratos Celulares/farmacologia , Vasos Coronários/efeitos dos fármacos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Hepatócitos/química , Inflamassomos/efeitos dos fármacos , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia
3.
Biomed Pharmacother ; 133: 110949, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227703

RESUMO

Autophagy has been implicated in the pathogenesis of chronic kidney disease (CKD). Transcription factor EB (TFEB) is a master controller of autophagy. However, the pathophysiological roles of TFEB in modulating autophagy and tubulointerstitial injury in CKD are unknown. This study aimed to determine whether TFEB-mediated autophagy contributed to the tubulointerstitial injury in mice with CKD. After the mice were treated with an adenine diet (0.2 % adenine) for 8 weeks, the development of CKD was observed to be characterised by increased levels of plasma blood urea nitrogen (BUN), creatinine (Cre), tubulointerstitial inflammation and fibrosis. Immunohistochemical and Western blot analysis further revealed that TFEB and autophagy genes were significantly up-regulated in the kidney of the mice with adenine-induced CKD, and this increase was mostly found in the tubular epithelial cells. Interestingly, a similar expression pattern of TFEB-autophagy genes was observed in tubular epithelial cells in the kidney tissue of patients with immunoglobulin A (IgA) nephropathy. Moreover, a pathogenic role of TFEB in adenine-induced CKD was speculated because the pharmacological activation of TFEB by trehalose failed to protect mice from tubulointerstitial injuries. In the epithelioid clone of normal rat kidney cells (NRK-52E), the activation of TFEB by trehalose increased autophagy induction, cell death and inflammatory cytokine (Interleukin-6, IL-6) release. Collectively, these results suggested that the activation of TFEB-mediated autophagy might cause autophagic cell death and inflammation in tubular epithelial cells, contributing to renal fibrosis in adenine-induced CKD. This study provided novel insights into the pathogenic role of TFEB in CKD associated with a high purine diet.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Nefrite Intersticial/metabolismo , Insuficiência Renal Crônica/metabolismo , Adenina , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/agonistas , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Fibrose , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Nefrite Intersticial/induzido quimicamente , Nefrite Intersticial/patologia , Ratos , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Trealose/farmacologia
4.
J Leukoc Biol ; 108(6): 1735-1746, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32573820

RESUMO

Recent studies have revealed that aloe emodin (AE), a natural compound from the root and rhizome of Rheum palmatum L., exhibits significant pharmacologic activities. However, the pharmacologic relevance of the compound, particularly for cardiovascular disease, remains largely unknown. Here, we hypothesized that AE could improve endothelial junction dysfunction through inhibiting the activation of NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome regulated by NLRP3 ubiquitination, and ultimately prevent cardiovascular disease. In vivo, we used confocal microscopy to study the expression of tight junction proteins zonula occludens-1/2 (ZO-1/2) and the formation of NLRP3 inflammasome in coronary arteries of hypertension. And the experimental serum was used to detect the activation of NLRP3 inflammasome by ELISA assay. We found that AE could restore the expression of the endothelial connective proteins ZO-1/2 and decrease the release of high mobility group box1 (HMGB1), and also inhibited the formation and activation of NLRP3 inflammasome. Similarly, in vitro, our findings demonstrated that AE could restore the expression of the tight junction proteins ZO-1/2 and decrease monolayer cell permeability that related to endothelial function after stimulation by angiotensin II (Ang II) in microvascular endothelial cells (MECs). We also demonstrated that AE could inhibit Ang II-induced NLRP3 inflammasome formation and activation, which were regulated by NLRP3 ubiquitination in MECs, as shown by fluorescence confocal microscopy and Western blot. Together with these changes, we revealed a new protection mechanism of AE that inhibited NLRP3 inflammasome activation and decreased the release of HMGB1 by promoting NLRP3 ubiquitination. Our findings implicated that AE exhibited immense potential and specific therapeutic value in hypertension-related cardiovascular disease in the early stage and the development of innovative drugs.


Assuntos
Angiotensina II/efeitos adversos , Antraquinonas/farmacologia , Células Endoteliais/imunologia , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Junções Íntimas/imunologia , Ubiquitinação/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Células Endoteliais/patologia , Proteína HMGB1/imunologia , Masculino , Camundongos , Junções Íntimas/patologia , Ubiquitinação/imunologia , Proteína da Zônula de Oclusão-1/imunologia , Proteína da Zônula de Oclusão-2/imunologia
5.
Transl Psychiatry ; 9(1): 189, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383855

RESUMO

Alzheimer's disease (AD) is the most common dementia in the elderly. Treatment for AD is still a difficult task in clinic. AD is associated with abnormal gut microbiota. However, little is known about the role of fecal microbiota transplantation (FMT) in AD. Here, we evaluated the efficacy of FMT for the treatment of AD. We used an APPswe/PS1dE9 transgenic (Tg) mouse model. Cognitive deficits, brain deposits of amyloid-ß (Aß) and phosphorylation of tau, synaptic plasticity as well as neuroinflammation were assessed. Gut microbiota and its metabolites short-chain fatty acids (SCFAs) were analyzed by 16S rRNA sequencing and 1H nuclear magnetic resonance (NMR). Our results showed that FMT treatment could improve cognitive deficits and reduce the brain deposition of amyloid-ß (Aß) in APPswe/PS1dE9 transgenic (Tg) mice. These improvements were accompanied by decreased phosphorylation of tau protein and the levels of Aß40 and Aß42. We observed an increases in synaptic plasticity in the Tg mice, showing that postsynaptic density protein 95 (PSD-95) and synapsin I expression were increased after FMT. We also observed the decrease of COX-2 and CD11b levels in Tg mice after FMT. We also found that FMT treatment reversed the changes of gut microbiota and SCFAs. Thus, FMT may be a potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Transplante de Microbiota Fecal , Aprendizagem Espacial/fisiologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Fosforilação , Presenilina-1/genética , Resultado do Tratamento , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...