Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Appl Oral Sci ; 31: e20230209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970885

RESUMO

OBJECTIVES: The endogenous repairing based on the activation of neural stem cells (NSCs) is impaired by neurodegenerative diseases. The present study aims to characterize human stem cells from the apical papilla (hSCAPs) with features of mesenchymal stem cells (MSCs) and to demonstrate the neuronal differentiation of hSCAPs into NSCs through the formation of three-dimensional (3D) neurospheres, verifying the structural, immunophenotyping, self-renewal, gene expression and neuronal activities of these cells to help further improve NSCs transplantation. METHODOLOGY: The hSCAPs were isolated from healthy impacted human third molar teeth and characterized as MSCs. They were then induced into 3D-neurospheres using a specific neural induction medium. Subsequently, the intra-neurospheral cells were confirmed to be NSCs by the identification of Nissl substance and the analysis of immunofluorescence staining, self-renewal ability, and gene expression of the cells. Moreover, the neuronal activity was investigated using intracellular calcium oscillation. RESULTS: The isolated cells from the human apical papilla expressed many markers of MSCs, such as self-renewal ability and multilineage differentiation. These cells were thus characterized as MSCs, specifically as hSCAPs. The neurospheres induced from hSCAPs exhibited a 3D-floating spheroidal shape and larger neurospheres, and consisted of a heterogeneous population of intra-neurospheral cells. Further investigation showed that these intra-neurospheral cells had Nissl body staining and also expressed both Nestin and SOX2. They presented a self-renewal ability as well, which was observed after their disaggregation. Their gene expression profiling also exhibited a significant amount of NSC markers (NES, SOX1, and PAX6). Lastly, a large and dynamic change of the fluorescent signal that indicated calcium ions (Ca2+) was detected in the intracellular calcium oscillation, which indicated the neuronal activity of NSCs-derived hSCAPs. CONCLUSIONS: The hSCAPs exhibited properties of MSCs and could differentiate into NSCs under 3D-neurosphere generation. The present findings suggest that NSCs-derived hSCAPs may be used as an alternative candidates for cell-based therapy, which uses stem cell transplantation to further treat neurodegenerative diseases.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Neurais , Doenças Neurodegenerativas , Humanos , Células-Tronco Neurais/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia
2.
J. appl. oral sci ; 31: e20230209, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1521080

RESUMO

Abstract Objectives The endogenous repairing based on the activation of neural stem cells (NSCs) is impaired by neurodegenerative diseases. The present study aims to characterize human stem cells from the apical papilla (hSCAPs) with features of mesenchymal stem cells (MSCs) and to demonstrate the neuronal differentiation of hSCAPs into NSCs through the formation of three-dimensional (3D) neurospheres, verifying the structural, immunophenotyping, self-renewal, gene expression and neuronal activities of these cells to help further improve NSCs transplantation. Methodology The hSCAPs were isolated from healthy impacted human third molar teeth and characterized as MSCs. They were then induced into 3D-neurospheres using a specific neural induction medium. Subsequently, the intra-neurospheral cells were confirmed to be NSCs by the identification of Nissl substance and the analysis of immunofluorescence staining, self-renewal ability, and gene expression of the cells. Moreover, the neuronal activity was investigated using intracellular calcium oscillation. Results The isolated cells from the human apical papilla expressed many markers of MSCs, such as self-renewal ability and multilineage differentiation. These cells were thus characterized as MSCs, specifically as hSCAPs. The neurospheres induced from hSCAPs exhibited a 3D-floating spheroidal shape and larger neurospheres, and consisted of a heterogeneous population of intra-neurospheral cells. Further investigation showed that these intra-neurospheral cells had Nissl body staining and also expressed both Nestin and SOX2. They presented a self-renewal ability as well, which was observed after their disaggregation. Their gene expression profiling also exhibited a significant amount of NSC markers (NES, SOX1, and PAX6). Lastly, a large and dynamic change of the fluorescent signal that indicated calcium ions (Ca2+) was detected in the intracellular calcium oscillation, which indicated the neuronal activity of NSCs-derived hSCAPs. Conclusions The hSCAPs exhibited properties of MSCs and could differentiate into NSCs under 3D-neurosphere generation. The present findings suggest that NSCs-derived hSCAPs may be used as an alternative candidates for cell-based therapy, which uses stem cell transplantation to further treat neurodegenerative diseases.

3.
J Int Soc Prev Community Dent ; 12(2): 171-177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462749

RESUMO

Aim: Because the digastric muscle is considered as an anatomical landmark, its variations may emphasize clinicians to be cautious during surgery. However, previous studies from different ethnicities reported a wide range of occurrence and several types of this muscle variation, pointing the necessity of the data from local population to better treatment decisions. Thus, this study aimed to explore the variations of the anterior belly of the digastric muscle in Thai cadavers. Materials and Methods: This cross-sectional study investigated the submental region of 91 cadavers by convenient sampling method. The characteristics of the variation in the anterior belly were recorded in accordance with sex and side of the cadavers. Multiple logistic regression was calculated for determining the association of occurrence of muscle variation with sexes and sides (α = 0.05). Results: Among 91 cadavers, the accessory bundles were observed in 16 cadavers (10 males and 6 females). The presence of the additional belly was sex and side independent. Three variation types were observed; the arrowhead type and the double-headed type have been previously reported, whereas the asymmetrical fan-shaped type is the new variant that has never been described before. Conclusions: The variation of the anterior belly of the digastric muscle including the new variant can be seen in Thais with low occurrence. To our knowledge, the present study is the first report of the aberrations of the digastric muscle in the Southeast Asian population. Therefore, our study provides the basis for anatomical study of muscular variants and helps surgeons plan the operation to prevent iatrogenic injuries.

4.
Life Sci ; 300: 120566, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461840

RESUMO

AIMS: Neurological diseases due to neuron loss have become major public health problems. Current treatment reduces symptoms; however, there is no cure for neurological diseases. Therefore, stem cells may be an alternative therapy. Human dental pulp stem cells (hDPSCs) are an attractive source for cell-based approaches due to their high regenerative potential. The Rho kinase (ROCK) inhibitor Y-27632 promoted the neuronal differentiation of several stem cell types. However, its neuronal-inductive effect on hDPSCs has not been reported. Thus, the aim of our study was to investigate whether Y-27632 can induce the neuronal differentiation of hDPSCs. MAIN METHODS: hDPSCs were isolated from human third molars using an enzymatic method and were subsequently characterized. Cytotoxicity was evaluated using an MTT assay. The optimal concentration to induce neural differentiation was assessed using 1-50 µM Y-27632 as evaluated by Cresyl violet and immunofluorescence staining of neurofilaments and ßIII-tubulin, respectively. Ten µM Y-27632 was used for neuronal induction for 72 h, and differentiation was confirmed based on the expression of neurogenic markers (MAP2, Brn3a, and ChAT) and intracellular calcium activity. KEY FINDINGS: Our findings indicate that Y-27632 was not cytotoxic to hDPSCs and 10 µM Y-27632 was the lowest concentration that induced the morphological changes of hDPSCs into neuronal cells with Cresyl violet-positive staining and significantly enhanced the fluorescence intensity of neurofilament and ßIII-tubulin. The neuronal genes' expression and intracellular calcium activity were upregulated after induction with Y-27632. SIGNIFICANCE: At the optimal concentration and time, Rho kinase inhibitor induces hDPSC differentiation into neuronal cells.


Assuntos
Diferenciação Celular , Neurônios , Quinases Associadas a rho , Cálcio/farmacologia , Células Cultivadas , Polpa Dentária/citologia , Humanos , Neurônios/citologia , Células-Tronco/citologia , Tubulina (Proteína) , Quinases Associadas a rho/antagonistas & inibidores
5.
Stem Cell Res Ther ; 11(1): 542, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317638

RESUMO

INTRODUCTION: Stem cell transplantation of exogenous neural progenitor cells (NPCs) derived from mesenchymal stem cells (MSCs) has emerged as a promising approach for neurodegenerative disease. Human stem cells from apical papilla (hSCAPs) are derived from migratory neural crest stem cells and exhibit a potential of neuronal differentiation. However, their neuronal differentiation is low and unpredictable. Resveratrol has been described as a sirtuin 1 (SIRT1) activator which plays an important role in enhancing neuronal differentiation. In this study, we investigate the potential of resveratrol as an enhancer on neuronal differentiation through NPCs induction of hSCAPs. METHODS: Stem cells were isolated from human apical papilla and characterized as MSCs. The cellular toxicity of resveratrol treatment to the characterized hSCAPs was investigated by MTT assay. The non-cellular toxicity concentrations of resveratrol were assessed with various pre-treatment times to select the optimal condition that highly expressed the neural progenitor gene, NES. Consequently, the optimal condition of resveratrol pre-treatment was synergistically performed with a neuronal induction medium to trigger neuronal differentiation. The differentiated cells were visualized, the genes profiling was quantified, and the percentage of neuronal differentiation was calculated. Moreover, the intracellular calcium oscillation was demonstrated. RESULTS: The cellular toxicity of resveratrol was not observed for up to 50 µM for 12 h. Interestingly, hSCAPs pre-treated with 10 µM resveratrol for 12 h (RSV-hSCAPs) significantly expressed NES, which is determined as the optimal condition. Under neuronal induction, both of hSCAPs and RSV-hSCAPs were differentiated (d-hSCAPs and RSV-d-hSCAPs) as they exhibited neuronal-like appearances with Nissl substance staining. The highest expression of NES and SOX1 was observed in RSV-d-hSCAPs. Additionally, the percentage of neuronal differentiation of RSV-d-hSCAPs was significantly higher than d-hSCAPs for 4 times. Importantly, the neuronal-like cells exhibited slightly increasing pattern of calcium intensity. CONCLUSION: This study demonstrated that pre-treatment of resveratrol strongly induces neural progenitor marker gene expression which synergistically enhances neural progenitor-like cells' induction with neuronal induction medium.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Neurais , Doenças Neurodegenerativas , Diferenciação Celular , Humanos , Resveratrol/farmacologia
6.
Anat Rec (Hoboken) ; 303(11): 2931-2946, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31930687

RESUMO

Sensorineural hearing loss is a common disability found worldwide which is associated with a degeneration of spiral ganglion neurons (SGN). It is a challenge to restore SGN due to the permanent degeneration and viability of SGN is requisite for patients to receive an advantage from hearing aid devices. Human dental pulp stem cells (DPSC) and stem cells from human exfoliated deciduous teeth (SHED) are self-renewing stem cells that originate from the neural crest during development. These stem cells have a high potential for neuronal differentiation. This is primarily due to their multilineage differentiation potential and their relative ease of access. Previously, we have shown the ability of these stem cell types to differentiate into spiral ganglion neuron-like cells. In this study, we induced the cells into neural precursor cells (NPC) and cocultured with auditory brainstem slice (ABS) encompassing cochlear nucleus by the Stoppini method. We also investigated their ability to differentiate after 2 weeks and 4 weeks in coculture. Neuronal differentiation of DPSC-NPC and SHED-NPC was higher expression of specific markers to SGN, TrkB, and Gata3, compared to monoculture. The cells also highly expressed synaptic vesicle protein (SV2A) and exhibited intracellular calcium oscillations. Our findings demonstrated the possibility of using DPSCs and SHEDs as an autologous stem cell-based therapy for sensorineural hearing loss patients.


Assuntos
Tronco Encefálico/fisiologia , Diferenciação Celular/fisiologia , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Neurônios/citologia , Dente Decíduo/citologia , Animais , Técnicas de Cocultura , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA