Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Clin Exp Dent Res ; 10(4): e905, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38938117

RESUMO

OBJECTIVES: The human oral microbiome, a complex ecosystem linked to oral and systemic health, harbors a diverse array of microbial populations, including antimicrobial resistance genes (ARGs). As a critical component of the One Health approach to tackle antibiotic resistance, comprehending the oral resistome's composition and diversity is imperative. The objective of this study was to investigate the impact of chemical cell lysis treatment using MetaPolyzyme on the detectability of the oral microbiome, resistome, and DNA quality and quantity. MATERIALS AND METHODS: Saliva samples were collected from five healthy individuals, and each of the samples was subjected to DNA extraction with and without the treatment with MetaPolyzyme. Through metagenomic sequencing, we analyzed, assessed, and compared the microbial composition, resistome, and DNA characteristics between both groups of extracted DNA. RESULTS: Our study revealed that MetaPolyzyme treatment led to significant shifts in the detectability of microbial composition, favoring Gram-positive bacteria, notably Streptococcus, over Gram-negative counterparts. Moreover, the MetaPolyzyme treatment also resulted in a distinct change in ARG distribution. This shift was characterized by an elevated proportion of ARGs linked to fluoroquinolones and efflux pumps, coupled with a reduction in the prevalence of tetracycline and ß-lactam resistance genes when compared with the nontreated group. Alpha diversity analysis demonstrated altered species and ARG distribution without affecting overall diversity, while beta diversity analysis confirmed significant differences in the taxonomical composition and oral resistome between treated and nontreated groups. CONCLUSIONS: These findings underscore the critical role of cell lysis treatment in optimizing oral metagenomic studies and enhance our understanding of the oral resistome's dynamics in the context of antimicrobial resistance.


Assuntos
DNA Bacteriano , Microbiota , Saliva , Saliva/microbiologia , Humanos , Microbiota/efeitos dos fármacos , Microbiota/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/genética , Metagenômica/métodos , Metagenoma , Farmacorresistência Bacteriana/genética , Boca/microbiologia , Adulto , Antibacterianos/farmacologia , Masculino , Feminino , Voluntários Saudáveis
2.
Plants (Basel) ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631787

RESUMO

Switchgrass (Panicum virgatum L.), a northern native perennial grass, suffers from yield reduction from Bipolaris leaf spot caused by Bipolaris oryzae (Breda de Haan) Shoemaker. This study aimed to determine the resistant populations via multiple phenotyping approaches and identify potential resistance genes from genome-wide association studies (GWAS) in the switchgrass northern association panel. The disease resistance was evaluated from both natural (field evaluations in Ithaca, New York and Phillipsburg, Philadelphia) and artificial inoculations (detached leaf and leaf disk assays). The most resistant populations based on a combination of three phenotyping approaches-detached leaf, leaf disk, and mean from two locations-were 'SW788', 'SW806', 'SW802', 'SW793', 'SW781', 'SW797', 'SW798', 'SW803', 'SW795', 'SW805'. The GWAS from the association panel showed 27 significant SNPs on 12 chromosomes: 1K, 2K, 2N, 3K, 3N, 4N, 5K, 5N, 6N, 7K, 7N, and 9N. These markers accumulatively explained the phenotypic variance of the resistance ranging from 3.28 to 26.52%. Within linkage disequilibrium of 20 kb, these SNP markers linked with the potential resistance genes included the genes encoding for NBS-LRR, PPR, cell-wall related proteins, homeostatic proteins, anti-apoptotic proteins, and ABC transporter.

3.
Front Plant Sci ; 13: 1040909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684744

RESUMO

Introduction: Sorghum (Sorghum bicolor (L.) Moench) is an agriculturally and economically important staple crop that has immense potential as a bioenergy feedstock due to its relatively high productivity on marginal lands. To capitalize on and further improve sorghum as a potential source of sustainable biofuel, it is essential to understand the genomic mechanisms underlying complex traits related to yield, composition, and environmental adaptations. Methods: Expanding on a recently developed mapping population, we generated de novo genome assemblies for 10 parental genotypes from this population and identified a comprehensive set of over 24 thousand large structural variants (SVs) and over 10.5 million single nucleotide polymorphisms (SNPs). Results: We show that SVs and nonsynonymous SNPs are enriched in different gene categories, emphasizing the need for long read sequencing in crop species to identify novel variation. Furthermore, we highlight SVs and SNPs occurring in genes and pathways with known associations to critical bioenergy-related phenotypes and characterize the landscape of genetic differences between sweet and cellulosic genotypes. Discussion: These resources can be integrated into both ongoing and future mapping and trait discovery for sorghum and its myriad uses including food, feed, bioenergy, and increasingly as a carbon dioxide removal mechanism.

4.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33950177

RESUMO

Genomic structural mutations, especially deletions, are an important source of variation in many species and can play key roles in phenotypic diversification and evolution. Previous work in many plant species has identified multiple instances of structural variations (SVs) occurring in or near genes related to stress response and disease resistance, suggesting a possible role for SVs in local adaptation. Sorghum [Sorghum bicolor (L.) Moench] is one of the most widely grown cereal crops in the world. It has been adapted to an array of different climates as well as bred for multiple purposes, resulting in a striking phenotypic diversity. In this study, we identified genome-wide SVs in the Biomass Association Panel, a collection of 347 diverse sorghum genotypes collected from multiple countries and continents. Using Illumina-based, short-read whole-genome resequencing data from every genotype, we found a total of 24,648 SVs, including 22,359 deletions. The global site frequency spectrum of deletions and other types of SVs fit a model of neutral evolution, suggesting that the majority of these mutations were not under any types of selection. Clustering results based on single nucleotide polymorphisms separated the genotypes into eight clusters which largely corresponded with geographic origins, with many of the large deletions we uncovered being unique to a single cluster. Even though most deletions appeared to be neutral, a handful of cluster-specific deletions were found in genes related to biotic and abiotic stress responses, supporting the possibility that at least some of these deletions contribute to local adaptation in sorghum.


Assuntos
Sorghum , Sorghum/genética , Melhoramento Vegetal , Genótipo , Genômica/métodos , Genoma de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA