Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 721-734, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428845

RESUMO

The constant selection and propagation of multi-resistant Plasmodium sp. parasites require the identification of new antimalarial candidates involved in as-yet untargeted metabolic pathways. Subtilisin-like protease 1 (SUB1) belongs to a new generation of drug targets because it plays a crucial role during egress of the parasite from infected host cells at different stages of its life cycle. SUB1 is characterized by an unusual pro-region that tightly interacts with its cognate catalytic domain, thus precluding 3D structural analysis of enzyme-inhibitor complexes. In the present study, to overcome this limitation, stringent ionic conditions and controlled proteolysis of recombinant full-length P. vivax SUB1 were used to obtain crystals of an active and stable catalytic domain (PvS1Cat) without a pro-region. High-resolution 3D structures of PvS1Cat, alone and in complex with an α-ketoamide substrate-derived inhibitor (MAM-117), showed that, as expected, the catalytic serine of SUB1 formed a covalent bond with the α-keto group of the inhibitor. A network of hydrogen bonds and hydrophobic interactions stabilized the complex, including at the P1' and P2' positions of the inhibitor, although P' residues are usually less important in defining the substrate specificity of subtilisins. Moreover, when associated with a substrate-derived peptidomimetic inhibitor, the catalytic groove of SUB1 underwent significant structural changes, particularly in its S4 pocket. These findings pave the way for future strategies for the design of optimized SUB1-specific inhibitors that may define a novel class of antimalarial candidates.


Assuntos
Antimaláricos , Subtilisina , Plasmodium vivax , Antimaláricos/farmacologia , Antimaláricos/química , Inibidores Enzimáticos/farmacologia , Proteínas de Protozoários/química
2.
Lancet Infect Dis ; 13(8): 672-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23721756

RESUMO

BACKGROUND: Salmonella enterica is a major global food-borne pathogen, causing life-threatening infections. Ciprofloxacin and extended-spectrum cephalosporins (ESCs) are the drugs of choice for severe infections. We previously reported a ciprofloxacin-resistant S. enterica serotype Kentucky (S Kentucky) ST198-X1 strain that emerged in Egypt and spread throughout Africa and the Middle East from 2002 to 2008. We aimed to monitor recent trends in the location of transmission and antimicrobial resistance of this strain. METHODS: We analysed isolates of S Kentucky collected by the French national surveillance system for salmonellosis in France from Jan 1, 2000, to Dec 31, 2011, and at two sites in Casablanca, Morocco, between Jan 1, 2003, and Dec 31, 2011. We analysed patterns of travel of patients infected with a ciprofloxacin-resistant strain of S Kentucky. We identified isolates showing resistance to ESCs or decreased susceptibility to carbapenems, characterised isolates by XbaI-pulsed field gel electrophoresis and multilocus sequence typing, and assessed mechanisms of bacterial resistance to antimicrobial drugs. FINDINGS: 954 (1%) of 128,836 serotyped Salmonella spp isolates in France were identified as S Kentucky, as were 30 (13%) of 226 Salmonella spp isolates from Morocco. During 2000-08, 200 (40%) of 497 subculturable isolates of S Kentucky obtained in France were resistant to ciprofloxacin, compared with 376 (83%) of 455 isolates in 2009-11, suggesting a recent increase in ciprofloxacin resistance in France. Travel histories suggested S Kentucky infections originated predominantly in east Africa, north Africa, west Africa, and the Middle East, but also arose in India. We report several occurrences of acquisition of extended-spectrum ß-lactamase (CTX-M-1, CTX-M-15), plasmid-encoded cephalosporinase (CMY-2), or carbapenemase (OXA-48, VIM-2) genes by ciprofloxacin-resistant isolates of S Kentucky ST198-X1 from the Mediterranean area since 2009. Many of these highly drug-resistant isolates were also resistant to most aminoglycosides, to co-trimoxazole (trimethoprim-sulfamethoxazole), and to azithromycin. INTERPRETATION: The potential risk to public health posed by ciprofloxacin-resistant S Kentucky ST198-X1 warrants its inclusion in national programmes for the control of S. enterica in food-producing animals, in particular in poultry. FUNDING: Institut Pasteur, Institut de Veille Sanitaire, Fondation pour la Recherche Médicale, French Government Investissement d'Avenir programme.


Assuntos
Antibacterianos , Ciprofloxacina , Farmacorresistência Bacteriana Múltipla , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella enterica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoglicosídeos , Azitromicina , Proteínas de Bactérias/genética , Criança , Farmacorresistência Bacteriana Múltipla/genética , Feminino , França/epidemiologia , Humanos , Masculino , Testes de Sensibilidade Microbiana , Marrocos/epidemiologia , Salmonella enterica/genética , Viagem , Combinação Trimetoprima e Sulfametoxazol , Adulto Jovem , beta-Lactamases/genética
3.
Front Microbiol ; 4: 395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385975

RESUMO

While the spread of Salmonella enterica serotype Kentucky resistant to ciprofloxacin across Africa and the Middle-East has been described recently, the presence of this strain in humans, food, various animal species (livestock, pets, and wildlife) and in environment is suspected in other countries of different continents. Here, we report results of an in-depth molecular epidemiological study on a global human and non-human collection of S. Kentucky (n = 70). We performed XbaI-pulsed field gel electrophoresis and multilocus sequence typing, assessed mutations in the quinolone resistance-determining regions, detected ß-lactam resistance mechanisms, and screened the presence of the Salmonella genomic island 1 (SGI1). In this study, we highlight the rapid and extensive worldwide dissemination of the ciprofloxacin-resistant S. Kentucky ST198-X1-SGI1 strain since the mid-2000s in an increasingly large number of contaminated sources, including the environment. This strain has accumulated an increasing number of chromosomal and plasmid resistance determinants and has been identified in the Indian subcontinent, Southeast Asia and Europe since 2010. The second substitution at position 87 in GyrA (replacing the amino acid Asp) appeared helpful for epidemiological studies to track the origin of contamination. This global study provides evidence leading to the conclusion that high-level resistance to ciprofloxacin in S. Kentucky is a simple microbiological trait that facilitates the identification of the epidemic clone of interest, ST198-X1-SGI1. Taking this into account is essential in order to detect and monitor it easily and to take rapid measures in livestock to ensure control of this infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...