Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 407: 110144, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670535

RESUMO

BACKGROUND: The enteric nervous system (ENS) is comprised of neurons, glia, and neural progenitor cells that regulate essential gastrointestinal functions. Advances in high-efficiency enteric neuron culture would facilitate discoveries surrounding ENS regulatory processes, pathophysiology, and therapeutics. NEW METHOD: Development of a simple, robust, one-step method to culture murine enteric neurospheres in a 3D matrix that supports neural growth and differentiation. RESULTS: Myenteric plexus cells isolated from the entire length of adult murine small intestine formed ≥3000 neurospheres within 7 days. Matrigel-embedded neurospheres exhibited abundant neural stem and progenitor cells expressing Sox2, Sox10 and Msi1 by day 4. By day 5, neural progenitor cell marker Nestin appeared in the periphery of neurospheres prior to differentiation. Neurospheres produced extensive neurons and neurites, confirmed by Tubulin beta III, PGP9.5, HuD/C, and NeuN immunofluorescence, including neural subtypes Calretinin, ChAT, and nNOS following 8 days of differentiation. Individual neurons within and external to neurospheres generated depolarization induced action potentials which were inhibited in the presence of sodium channel blocker, Tetrodotoxin. Differentiated neurospheres also contained a limited number of glia and endothelial cells. COMPARISON WITH EXISTING METHODS: This novel one-step neurosphere growth and differentiation culture system, in 3D format (in the presence of GDNF, EGF, and FGF2), allows for ∼2-fold increase in neurosphere count in the derivation of enteric neurons with measurable action potentials. CONCLUSION: Our method describes a novel, robust 3D culture of electrophysiologically active enteric neurons from adult myenteric neural stem and progenitor cells.

2.
Brain ; 147(5): 1856-1870, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38146224

RESUMO

Alterations in the extracellular matrix are common in patients with epilepsy and animal models of epilepsy, yet whether they are the cause or consequence of seizures and epilepsy development is unknown. Using Theiler's murine encephalomyelitis virus (TMEV) infection-induced model of acquired epilepsy, we found de novo expression of chondroitin sulfate proteoglycans (CSPGs), a major extracellular matrix component, in dentate gyrus (DG) and amygdala exclusively in mice with acute seizures. Preventing the synthesis of CSPGs specifically in DG and amygdala by deletion of the major CSPG aggrecan reduced seizure burden. Patch-clamp recordings from dentate granule cells revealed enhanced intrinsic and synaptic excitability in seizing mice that was significantly ameliorated by aggrecan deletion. In situ experiments suggested that dentate granule cell hyperexcitability results from negatively charged CSPGs increasing stationary cations on the membrane, thereby depolarizing neurons, increasing their intrinsic and synaptic excitability. These results show increased expression of CSPGs in the DG and amygdala as one of the causal factors for TMEV-induced acute seizures. We also show identical changes in CSPGs in pilocarpine-induced epilepsy, suggesting that enhanced CSPGs in the DG and amygdala may be a common ictogenic factor and potential therapeutic target.


Assuntos
Tonsila do Cerebelo , Proteoglicanas de Sulfatos de Condroitina , Giro Denteado , Convulsões , Animais , Giro Denteado/metabolismo , Tonsila do Cerebelo/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Camundongos , Convulsões/metabolismo , Masculino , Theilovirus , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camundongos Knockout , Agrecanas/metabolismo , Neurônios/metabolismo
3.
FEBS J ; 290(20): 4950-4965, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428551

RESUMO

Neuronal differentiation and maturation are extended developmental processes. To determine whether neurons at different developmental stages have divergent chemosensitivities, we screened differentiating and maturing neuronal populations using a small compound library comprising FDA-approved and investigational drugs. Using a neurotoxicity assay format, both respective neuronal population-based screening campaigns performed robustly (Z-factors = 0.7-0.8), although the hit rate for the differentiating neurons (2.8%) was slightly higher than for maturing neurons (1.9%). While the majority of hits were toxic to both neuronal populations, these hits predominantly represented promiscuous drugs. Other drugs were selectively neurotoxic, with receptor tyrosine kinase inhibitors disproportionally represented after confirmation. Ponatinib and amuvatinib were neuroinhibitory for differentiating and maturing neurons, respectively. Chemoinformatic analyses confirmed differences in potential drug targets that may be differentially expressed during neuronal development. Subsequent studies demonstrated neuronal expression of AXL, an amuvatinib target, in both neuronal populations. However, functional AXL activity was confirmed only in the maturing neuronal population as determined by AXL phosphorylation in response to GAS6, the cognate ligand of AXL, and concurrent STAT3Y705 phosphorylation. Differentiating neurons were unresponsive to the effects of GAS6 suggesting that the AXL-STAT3 signaling axis was nonfunctional. Amuvatinib treatment of maturing neuronal cultures significantly reduced pAXL levels. These studies indicate that neuronal developmental states may exhibit unique chemosensitivities and that drugs may have different neuro-inhibitory effects depending upon the developmental stage of the neuronal population.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores Proteína Tirosina Quinases , Humanos , Receptores Proteína Tirosina Quinases/genética , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neurônios/metabolismo
4.
Adv Healthc Mater ; 12(28): e2300964, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37473719

RESUMO

Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Herein, submillimeter fiber robots that can integrate navigation, sensing, and modulation functions are presented. These fiber robots are fabricated through a scalable thermal drawing process at a speed of 4 meters per minute, which enables the integration of ferromagnetic, electrical, optical, and microfluidic composite with an overall diameter of as small as 250 µm and a length of as long as 150 m. The fiber tip deflection angle can reach up to 54o under a uniform magnetic field of 45 mT. These fiber robots can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, Langendorff mouse hearts model, glioblastoma micro platforms, and in vivo mouse models are utilized to demonstrate the capabilities of sensing electrophysiology signals and performing a localized treatment. Additionally, it is demonstrated that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.


Assuntos
Robótica , Animais , Camundongos , Robótica/métodos , Desenho de Equipamento , Miniaturização , Campos Magnéticos
5.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292901

RESUMO

Alterations in the extracellular matrix (ECM) are common in epilepsy, yet whether they are cause or consequence of disease is unknow. Using Theiler's virus infection model of acquired epilepsy we find de novo expression of chondroitin sulfate proteoglycans (CSPGs), a major ECM component, in dentate gyrus (DG) and amygdala exclusively in mice with seizures. Preventing synthesis of CSPGs specifically in DG and amygdala by deletion of major CSPG aggrecan reduced seizure burden. Patch-clamp recordings from dentate granule cells (DGCs) revealed enhanced intrinsic and synaptic excitability in seizing mice that was normalized by aggrecan deletion. In situ experiments suggest that DGCs hyperexcitability results from negatively charged CSPGs increasing stationary cations (K+, Ca2+) on the membrane thereby depolarizing neurons, increasing their intrinsic and synaptic excitability. We show similar changes in CSPGs in pilocarpine-induced epilepsy suggesting enhanced CSPGs in the DG and amygdala may be a common ictogenic factor and novel therapeutic potential.

6.
Cells ; 12(9)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37174647

RESUMO

BACKGROUND: Traumatic brain injury (TBI) remains a significant risk factor for post-traumatic epilepsy (PTE). The pathophysiological mechanisms underlying the injury-induced epileptogenesis are under investigation. The dentate gyrus-a structure that is highly susceptible to injury-has been implicated in the evolution of seizure development. METHODS: Utilizing the murine unilateral focal control cortical impact (CCI) injury, we evaluated seizure onset using 24/7 EEG video analysis at 2-4 months post-injury. Cellular changes in the dentate gyrus and hilus of the hippocampus were quantified by unbiased stereology and Imaris image analysis to evaluate Prox1-positive cell migration, astrocyte branching, and morphology, as well as neuronal loss at four months post-injury. Isolation of region-specific astrocytes and RNA-Seq were performed to determine differential gene expression in animals that developed post-traumatic epilepsy (PTE+) vs. those animals that did not (PTE-), which may be associated with epileptogenesis. RESULTS: CCI injury resulted in 37% PTE incidence, which increased with injury severity and hippocampal damage. Histological assessments uncovered a significant loss of hilar interneurons that coincided with aberrant migration of Prox1-positive granule cells and reduced astroglial branching in PTE+ compared to PTE- mice. We uniquely identified Cst3 as a PTE+-specific gene signature in astrocytes across all brain regions, which showed increased astroglial expression in the PTE+ hilus. CONCLUSIONS: These findings suggest that epileptogenesis may emerge following TBI due to distinct aberrant cellular remodeling events and key molecular changes in the dentate gyrus of the hippocampus.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Camundongos , Animais , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Gliose/complicações , Lesões Encefálicas Traumáticas/complicações , Convulsões , Interneurônios/metabolismo
7.
Res Sq ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778342

RESUMO

Perineuronal nets (PNNs) are dense, negatively charged extracellular matrices that cover the cell body of fast-spiking inhibitory neurons. Synapses can be embedded and stabilized by PNNs believed to prevent synaptic plasticity. We find that in cortical fast-spiking interneurons synaptic terminals localize to perforations in the PNNs, 95% of which contain either excitatory or inhibitory synapses or both. The majority of terminals also colocalize with astrocytic processes expressing Kir4.1 as well as glutamate (Glu) and GABA transporters, hence can be considered tripartite synapses. In the adult brain, degradation of PNNs does not alter axonal terminals but causes expansion of astrocytic coverage of the neuronal somata. However, loss of PNNs impairs astrocytic transmitter and K+ uptake and causes spillage of synaptic Glu into the extrasynaptic space. This data suggests a hitherto unrecognized role of PNNs, to synergize with astrocytes to contain synaptically released signals.

8.
bioRxiv ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36778450

RESUMO

Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Here, we present a robotic fiber platform for integrating navigation, sensing, and therapeutic functions at a submillimeter scale. These fiber robots consist of ferromagnetic, electrical, optical, and microfluidic components, fabricated with a thermal drawing process. Under magnetic actuation, they can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, we utilize Langendorff mouse hearts model, glioblastoma microplatforms, and in vivo mouse models to demonstrate the capabilities of sensing electrophysiology signals and performing localized treatment. Additionally, we demonstrate that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.

9.
Neuroscientist ; 29(2): 158-165, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-33754906

RESUMO

Once strictly the domain of medical and graduate education, neuroscience has made its way into the undergraduate curriculum with over 230 colleges and universities now offering a bachelor's degree in neuroscience. The disciplinary focus on the brain teaches students to apply science to the understanding of human behavior, human interactions, sensation, emotions, and decision making. In this article, we encourage new and existing undergraduate neuroscience programs to envision neuroscience as a broad discipline with the potential to develop competencies suitable for a variety of careers that reach well beyond research and medicine. This article describes our philosophy and illustrates a broad-based undergraduate degree in neuroscience implemented at a major state university, Virginia Tech. We highlight the fact that the research-centered Experimental Neuroscience major is least popular of our four distinct majors, which underscores our philosophy that undergraduate neuroscience can cater to a different audience than traditionally thought.


Assuntos
Neurociências , Humanos , Neurociências/educação , Currículo , Estudantes , Universidades , Encéfalo
10.
Front Cell Neurosci ; 16: 1022754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339816

RESUMO

A structural scaffold embedding brain cells and vasculature is known as extracellular matrix (ECM). The physical appearance of ECM in the central nervous system (CNS) ranges from a diffused, homogeneous, amorphous, and nearly omnipresent matrix to highly organized distinct morphologies such as basement membranes and perineuronal nets (PNNs). ECM changes its composition and organization during development, adulthood, aging, and in several CNS pathologies. This spatiotemporal dynamic nature of the ECM and PNNs brings a unique versatility to their functions spanning from neurogenesis, cell migration and differentiation, axonal growth, and pathfinding cues, etc., in the developing brain, to stabilizing synapses, neuromodulation, and being an active partner of tetrapartite synapses in the adult brain. The malleability of ECM and PNNs is governed by both intrinsic and extrinsic factors. Glial cells are among the major extrinsic factors that facilitate the remodeling of ECM and PNN, thereby acting as key regulators of diverse functions of ECM and PNN in health and diseases. In this review, we discuss recent advances in our understanding of PNNs and how glial cells are central to ECM and PNN remodeling in normal and pathological states of the CNS.

11.
Front Cell Dev Biol ; 10: 961292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874836

RESUMO

Well over 100 different viruses can infect the brain and cause brain inflammation. In the developing world, brain inflammation is a leading cause for epilepsy and often refractory to established anti-seizure drugs. Epilepsy generally results from an imbalance in excitatory glutamatergic and inhibitory GABAergic neurotransmission. GABAergic inhibition is determined by the intracellular Cl- concentration which is established through the opposing action of two cation chloride cotransporters namely NKCC1 and KCC2. Brain-derived neurotrophic factor (BDNF) signaling is known to regulate expression of KCC2. Hence we hypothesized that viral induced epilepsy may result from aberrant BDNF signaling. We tested this hypothesis using a mouse model of Theiler's murine encephalomyelitis virus (TMEV) infection-induced epilepsy. We found that BDNF levels in the hippocampus from TMEV-infected mice with seizures was increased at the onset of acute seizures and continued to increase during the peak of acute seizure as well as in latent and chronic phases of epilepsy. During the acute phase of epilepsy, we found significant reduction in the expression of KCC2 in hippocampus, whereas the level of NKCC1 was unaltered. Importantly, inhibiting BDNF using scavenging bodies of BDNF in live brain slices from TMEV-infected mice with seizures normalized the level of KCC2 in hippocampus. Our results suggest that BDNF can directly decrease the relative expression of NKCC1 and KCC2 such as to favor accumulation of chloride intracellularly which in turn causes hyperexcitability by reversing GABA-mediated inhibition. Although our attempt to inhibit the BDNF signaling mediated through tyrosine kinase B-phospholipase Cγ1 (TrkB-PLCγ1) using a small peptide did not change the course of seizure development following TMEV infection, alternative strategies for controlling the BDNF signaling could be useful in preventing seizure generation and development of epilepsy in this model.

12.
Nat Commun ; 13(1): 1794, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379828

RESUMO

Astrocytes extend endfeet that enwrap the vasculature, and disruptions to this association which may occur in disease coincide with breaches in blood-brain barrier (BBB) integrity. Here we investigate if focal ablation of astrocytes is sufficient to disrupt the BBB in mice. Targeted two-photon chemical apoptotic ablation of astrocytes induced a plasticity response whereby surrounding astrocytes extended processes to cover vascular vacancies. In young animals, replacement processes occur in advance of endfoot retraction, but this is delayed in aged animals. Stimulation of replacement astrocytes results in constriction of pre-capillary arterioles, suggesting that replacement astrocytes are functional. Pharmacological inhibition of pSTAT3, as well as astrocyte specific deletion of pSTAT3, reduces astrocyte replacement post-ablation, without perturbations to BBB integrity. Similar endfoot replacement occurs following astrocyte cell death due to reperfusion in a stroke model. Together, these studies uncover the ability of astrocytes to maintain cerebrovascular coverage via substitution from nearby cells.


Assuntos
Astrócitos , Acidente Vascular Cerebral , Animais , Arteríolas , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Camundongos , Acidente Vascular Cerebral/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 42(4): e96-e114, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35139658

RESUMO

BACKGROUND: Vascular pericytes stabilize blood vessels and contribute to their maturation, while playing other key roles in microvascular function. Nevertheless, relatively little is known about involvement of their precursors in the earliest stages of vascular development, specifically during vasculogenesis. METHODS: We combined high-power, time-lapse imaging with transcriptional profiling of emerging pericytes and endothelial cells in reporter mouse and cell lines. We also analyzed conditional transgenic animals deficient in Cx43/Gja1 (connexin 43/gap junction alpha-1) expression within Ng2+ cells. RESULTS: A subset of Ng2-DsRed+ cells, likely pericyte/mural cell precursors, arose alongside endothelial cell differentiation and organization and physically engaged vasculogenic endothelium in vivo and in vitro. We found no overlap between this population of differentiating pericyte/mural progenitors and other lineages including hemangiogenic and neuronal/glial cell types. We also observed cell-cell coupling and identified Cx43-based gap junctions contributing to pericyte-endothelial cell precursor communication during vascular assembly. Genetic loss of Cx43/Gja1 in Ng2+ pericyte progenitors compromised embryonic blood vessel formation in a subset of animals, while surviving mutants displayed little-to-no vessel abnormalities, suggesting a resilience to Cx43/Gja1 loss in Ng2+ cells or potential compensation by additional connexin isoforms. CONCLUSIONS: Together, our data suggest that a distinct pericyte lineage emerges alongside vasculogenesis and directly communicates with the nascent endothelium via Cx43 during early vessel formation. Cx43/Gja1 loss in pericyte/mural cell progenitors can induce embryonic vessel dysmorphogenesis, but alternate connexin isoforms may be able to compensate. These data provide insight that may reshape the current framework of vascular development and may also inform tissue revascularization/vascularization strategies.


Assuntos
Conexina 43 , Pericitos , Animais , Diferenciação Celular , Conexina 43/genética , Conexinas/genética , Células Endoteliais , Camundongos
14.
Epilepsia ; 63(4): 844-854, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132640

RESUMO

OBJECTIVE: Previously, we reported that inhibition of the astrocytic cystine/glutamate antiporter system xc- (SXC), using sulfasalazine (SAS), decreased evoked excitatory signaling in three distinct hyperexcitability models ex vivo. The current study expands on this work by evaluating the in vivo efficacy of SAS in decreasing astrogliosis-mediated seizure burden seen in the beta-1 integrin knockout (B1KO) model. METHODS: Video-EEG (electroencephalography) monitoring (24/7) was obtained using Biopac EEG acquisition hardware and software. EEG spectral analysis was performed using MATLAB. SAS was used at an equivalence of doses taken by Crohn's disease patients. Whole-cell patch-clamp recordings were made from cortical layer 2/3 pyramidal neurons. RESULTS: We report that 100% of B1KO mice that underwent 24/7 video-EEG monitoring developed spontaneous recurrent seizures and that intraperitoneal administration of SAS significantly reduced seizure frequency in B1KOs compared to B1KOs receiving sham saline. Spectral analysis found an acute reduction in EEG power following SAS treatment in B1KOs; however, this effect was not observed in nonepileptic control mice receiving SAS. Finally, whole-cell recordings from SXC knockout mice had hyperpolarized neurons and SXC-B1 double knockouts fired significantly less action potentials in response to current injection compared to B1KOs with SXC. SIGNIFICANCE: To devise effective strategies in finding relief for one-in-three patients with epilepsy who experience drug-resistant epilepsy we must continue to explore the mechanisms regulating glutamate homeostasis. This study explored the efficacy of targeting an astrocytic glutamate antiporter, SXC, as a novel antiepileptic drug (AED) target and further characterized a unique mouse model in which chronic astrogliosis is sufficient to induce spontaneous seizures and epilepsy. These findings may serve as a foundation to further assess the potential for SAS or inform the development of more potent and specific compounds that target SXC as a novel treatment for epilepsy.


Assuntos
Epilepsia , Sulfassalazina , Animais , Antiporters , Eletroencefalografia , Epilepsia/tratamento farmacológico , Gliose , Ácido Glutâmico , Humanos , Camundongos , Convulsões/tratamento farmacológico , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico
15.
Cancers (Basel) ; 13(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34944790

RESUMO

Glioblastoma multiforme (GBM) is a deadly brain tumor with a large unmet therapeutic need. Here, we tested the hypothesis that wild-type p53 is a negative transcriptional regulator of SLC7A11, the gene encoding the System xc- (SXC) catalytic subunit, xCT, in GBM. We demonstrate that xCT expression is inversely correlated with p53 expression in patient tissue. Using representative patient derived (PDX) tumor xenolines with wild-type, null, and mutant p53 we show that p53 expression negatively correlates with xCT expression. Using chromatin immunoprecipitation studies, we present a molecular interaction whereby p53 binds to the SLC7A11 promoter, suppressing gene expression in PDX GBM cells. Accordingly, genetic knockdown of p53 increases SLC7A11 transcript levels; conversely, over-expressing p53 in p53-null GBM cells downregulates xCT expression and glutamate release. Proof of principal studies in mice with flank gliomas demonstrate that daily treatment with the mutant p53 reactivator, PRIMA-1Met, results in reduced tumor growth associated with reduced xCT expression. These findings suggest that p53 is a molecular switch for GBM glutamate biology, with potential therapeutic utility.

16.
Epilepsy Curr ; 21(4): 273-281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690566

RESUMO

Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) assemblies of polyanionic chondroitin sulfate proteoglycans, hyaluronan, and tenascins that primarily wrap around GABAergic parvalbumin (PV) interneurons. During development, PNN formation terminates the critical period of neuroplasticity, a process that can be reversed by experimental disruption of PNNs. Perineuronal nets also regulate the intrinsic properties of the enclosed PV neurons thereby maintaining their inhibitory activity. Recent studies have implicated PNNs in central nervous system diseases as well as PV neuron dysfunction; consequently, they have further been associated with altered inhibition, particularly in the genesis of epilepsy. A wide range of seizure presentations in human and rodent models exhibit ECM remodeling with PNN disruption due to elevated protease activity. Inhibition of PNN proteolysis reduces seizure activity suggesting that PNN degrading enzymes may be potential novel therapeutic targets.

17.
ACS Pharmacol Transl Sci ; 4(4): 1295-1305, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423267

RESUMO

Glioblastoma multiforme (GBM) is a highly invasive, central nervous system (CNS) cancer for which there is no cure. Invading tumor cells evade treatment, limiting the efficacy of the current standard of care regimen. Understanding the underlying invasive behaviors that support tumor growth may allow for generation of novel GBM therapies. Zebrafish (Danio rerio) are attractive for genetics and live imaging and have, in recent years, emerged as a model system suitable for cancer biology research. While other groups have studied CNS tumors using zebrafish, few have concentrated on the invasive behaviors supporting the development of these diseases. Previous studies demonstrated that one of the main mechanisms of GBM invasion is perivascular invasion, i.e., single tumor cell migration along blood vessels. Here, we characterize phenotypes, methodology, and potential therapeutic avenues for utilizing zebrafish to model perivascular GBM invasion. Using patient-derived xenolines or an adherent cell line, we demonstrate tumor expansion within the zebrafish brain. Within 24-h postintracranial injection, D54-MG-tdTomato glioma cells produce fingerlike projections along the zebrafish brain vasculature. As few as 25 GBM cells were sufficient to promote single cell vessel co-option. Of note, these tumor-vessel interactions are CNS specific and do not occur on pre-existing blood vessels when injected into the animal's peripheral tissue. Tumor-vessel interactions increase over time and can be pharmacologically disrupted through inhibition of Wnt signaling. Therefore, zebrafish serve as a favorable model system to study perivascular glioma invasion, one of the deadly characteristics that make GBM so difficult to treat.

18.
Front Cell Dev Biol ; 9: 654338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268301

RESUMO

An emerging area of interest in Neuroscience is the cellular relationship between glia and blood vessels, as many of the presumptive support roles of glia require an association with the vasculature. These interactions are best studied in vivo and great strides have been made using mice to longitudinally image glial-vascular interactions. However, these methods are cumbersome for developmental studies, which could benefit from a more accessible system. Zebrafish (Danio rerio) are genetically tractable vertebrates, and given their translucency, are readily amenable for daily live imaging studies. We set out to examine whether zebrafish glia have conserved traits with mammalian glia regarding their ability to interact with and maintain the developing brain vasculature. We utilized transgenic zebrafish strains in which oligodendrocyte transcription factor 2 (olig2) and glial fibrillary acidic protein (gfap) identify different glial populations in the zebrafish brain and document their corresponding relationship with brain blood vessels. Our results demonstrate that olig2+ and gfap+ zebrafish glia have distinct lineages and each interact with brain vessels as previously observed in mouse brain. Additionally, we manipulated these relationships through pharmacological and genetic approaches to distinguish the roles of these cell types during blood vessel development. olig2+ glia use blood vessels as a pathway during their migration and Wnt signaling inhibition decreases their single-cell vessel co-option. By contrast, the ablation of gfap+ glia at the beginning of CNS angiogenesis impairs vessel development through a reduction in Vascular endothelial growth factor (Vegf), supporting a role for gfap+ glia during new brain vessel formation in zebrafish. This data suggests that zebrafish glia, akin to mammalian glia, have different lineages that show diverse interactions with blood vessels, and are a suitable model for elucidating glial-vascular relationships during vertebrate brain development.

19.
Epilepsia Open ; 6(2): 276-296, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34033232

RESUMO

Epilepsy is one of the most common chronic brain diseases and is often associated with cognitive, behavioral, or other medical conditions. The need for therapies that would prevent, ameliorate, or cure epilepsy and the attendant comorbidities is a priority for both epilepsy research and public health. In 2018, the National Institute of Neurological Disease and Stroke (NINDS) convened a workshop titled "Accelerating the Development of Therapies for Antiepileptogenesis and Disease Modification" that brought together preclinical and clinical investigators and industry and regulatory bodies' representatives to discuss and propose a roadmap to accelerate the development of antiepileptogenic (AEG) and disease-modifying (DM) new therapies. This report provides a summary of the discussions and proposals of the Preclinical Science working group. Highlights of the progress of collaborative preclinical research projects on AEG/DM of ongoing research initiatives aiming to improve infrastructure and translation to clinical trials are presented. Opportunities and challenges of preclinical epilepsy research, vis-à-vis clinical research, were extensively discussed, as they pertain to modeling of specific epilepsy types across etiologies and ages, the utilization of preclinical models in AG/DM studies, and the strategies and study designs, as well as on matters pertaining to transparency, data sharing, and reporting research findings. A set of suggestions on research initiatives, infrastructure, workshops, advocacy, and opportunities for expanding the borders of epilepsy research were discussed and proposed as useful initiatives that could help create a roadmap to accelerate and optimize preclinical translational AEG/DM epilepsy research.


Assuntos
Epilepsia , Acidente Vascular Cerebral , Comorbidade , Epilepsia/tratamento farmacológico , Humanos , National Institute of Neurological Disorders and Stroke (USA) , Acidente Vascular Cerebral/complicações , Pesquisa Translacional Biomédica , Estados Unidos
20.
Front Neurol ; 12: 652159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828523

RESUMO

Given the important functions that glutamate serves in excitatory neurotransmission, understanding the regulation of glutamate in physiological and pathological states is critical to devising novel therapies to treat epilepsy. Exclusive expression of pyruvate carboxylase and glutamine synthetase in astrocytes positions astrocytes as essential regulators of glutamate in the central nervous system (CNS). Additionally, astrocytes can significantly alter the volume of the extracellular space (ECS) in the CNS due to their expression of the bi-directional water channel, aquaporin-4, which are enriched at perivascular endfeet. Rapid ECS shrinkage has been observed following epileptiform activity and can inherently concentrate ions and neurotransmitters including glutamate. This review highlights our emerging knowledge on the various potential contributions of astrocytes to epilepsy, particularly supporting the notion that astrocytes may be involved in seizure initiation via failure of homeostatic responses that lead to increased ambient glutamate. We also review the mechanisms whereby ambient glutamate can influence neuronal excitability, including via generation of the glutamate receptor subunit GluN2B-mediated slow inward currents, as well as indirectly affect neuronal excitability via actions on metabotropic glutamate receptors that can potentiate GluN2B currents and influence neuronal glutamate release probabilities. Additionally, we discuss evidence for upregulation of System x c - , a cystine/glutamate antiporter expressed on astrocytes, in epileptic tissue and changes in expression patterns of glutamate receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...