Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 236(Pt 2): 116735, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517489

RESUMO

In the current study, an attempt was made to synthesize coffee husk (CH) activated carbon by chemical modification approach (sulphuric acid-activated CH (SACH) activated carbon) and was used as a valuable and economical sorbent for plausible remediation of Methylene blue (MB) dye. Batch mode trials were carried out by carefully varying the batch experimental variables: SACH activated carbon (SACH AC) dosage, pH, initial dye concentration, temperature, and contact time. The optimum equilibrium time for adsorption by SACH activated carbon was obtained as 60 min, and the maximum adsorption took place at 30 °C. Morphological and elemental composition, crystallinity behaviour, functional groups, and thermal stability were examined using SEM with EDX, XRD, FTIR, BET, TGA, and DTA and these tests showed successful production of activated carbon. The outcomes showed that chemical activation enhanced the number of pores and roughness which possibly maximized the adsorptive potential of coffee husk. The Box-Benken design (BBD) was used to optimize the MB dye adsorption studies and 99.48% MB dye removed at SACH AC dosage of 4.83 g/L at 30 °C for 60 min and pH 8.12, and the maximum adsorption was yielded for sulphuric acid-activated coffee husk carbon carbon with 88.1 mg/g maximum MB adsorption capacity. Langmuir- Freundlich model deliberately provided a better fit to the equilibrium data. The SACH AC-MB dye system kinetics showed a high goodness-of-fit with pseudo second order model, compared to other studied models. Change in Gibbs's free energy (ΔGo) of the system indicated spontaneity whereas low entropy value (ΔSo) suggested that the removal of MB dye on the SACH activated carbon was an enthalpy-driven process. The exothermic nature of the sorption cycle was affirmed by the negative enthalpy value (ΔHo). The adsorptive-desorptive studies reveal that SACH AC could be restored with the maximum adsorption efficiency being conserved after the fifth cycles. Overall, the outcomes revealed that sulphuric acid-activated coffee husk activated carbon (SACH AC) can be used as prompt alternative for low-cost sorbent for treating dye-laden synthetic wastewaters.


Assuntos
Coffea , Poluentes Químicos da Água , Azul de Metileno/análise , Carvão Vegetal , Adsorção , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Termodinâmica , Cinética , Água/química
2.
Environ Sci Pollut Res Int ; 30(6): 14265-14283, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36149551

RESUMO

In the present study, biomass from the Chromolaena odorata plant's stem was activated using sulfuric acid to adsorb crystal violet (CV) dye. The adsorption operation of CV dye was studied considering the effect of variables like pH, initial dye concentration, time, adsorbent dosage, and temperature. The pseudo-second-order equation best fitted the kinetic study. The thermodynamic parameters such as activation energy (9.56 kJ/mol), change in Gibbs energy (81.43 to 96.7 kJ/mol), enthalpy change (6.89 kJ/mol), and entropy change (-254.4 J/mol K) were calculated. Response surface methodology estimated that at pH (4.902), adsorbent dosage (8.33 g/L), dye concentration (82.30 ppm), and temperature (300.13 K) dye removal of 97.53% is possible. FTIR, SEM, XRD, BJH, and BET confirmed adsorption operation. The adsorbent can be reused for 3 cycles effectively. Langmuir isotherm which best fitted the adsorption operation was used for designing a theoretical single-stage batch adsorber for large-scale operation.


Assuntos
Chromolaena , Poluentes Químicos da Água , Violeta Genciana/química , Biomassa , Termodinâmica , Temperatura , Cinética , Adsorção , Água , Concentração de Íons de Hidrogênio
3.
Sci Total Environ ; 780: 146469, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774299

RESUMO

The evolution of computer vision and image processing system paved the way that any technologists can extract quantitative data sets from the visual results of an image. Digital image processing (DIP) technique precisely measures and quantifies the image and eliminates the subjectivity of manual interpretation. DIP is a non-destructive, inexpensive and rapid method that has been used by many researchers in various applications of biofuel. In fuel science, DIP and artificial intelligence (AI) techniques have been successfully applied for the classification of biodiesel, selection of biomass for biofuel production. DIP can be used in the combustion process and its control parameters, gas leakage, monitoring fuel reactant conversion reactions, impurities present and adulteration of fuel, also automation process of a fuel injection system. This review gives an overview of the applications of image processing in fuel science.

4.
Carbohydr Polym ; 225: 115240, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31521287

RESUMO

Pectin was extracted from the waste custard apple peel using ultrasound technique and optimized the extraction process by RSM. The various significant process parameters such as liquid-solid ratio, ultra-sonication time, temperature and pH of solution were studied in the range of 10-25 mL g-1, 10-30 min, 50-80 °C, and 1-3, respectively. The maximum yield of pectin (8.93%) was attained at the optimum condition of 23.52 mL g-1 of liquid-solid ratio, 18.04  min of ultra-sonication time, 63.22 °C of temperature and 2.3 pH of solution. The extracted and commercially available fresh pectin (for comparison purposes) were characterized by various analytical techniques namely, FTIR, DSC, XRD, SEM, and NMR to evaluate their functional groups, thermal properties, crystallinities, morphological and structural characteristics, respectively. The extracted pectin was a toxic free compound as determined by its anti nutritional property study and about 20 mg/mL of antioxidant presented in it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...