Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(1): e202300228, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857549

RESUMO

Electrocatalytic water splitting is a promising alternative to produce high purity hydrogen gas as the green substitute for renewable energy. Thus, development of electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are vital to improve the efficiency of the water splitting process particularly based on transition metals which has been explored extensively to replace the highly active electrocatalytic activity of the iridium and ruthenium metals-based electrocatalysts. In situ growth of the material on a conductive substrate has also been proven to have the capability to lower down the overpotential value significantly. On top of that, the presence of substrate has given a massive impact on the morphology of the electrocatalyst. Among the conductive substrates that have been widely explored in the field of electrochemistry are the copper based substrates mainly copper foam, copper foil and copper mesh. Copper-based substrates possess unique properties such as low in cost, high tensile strength, excellent conductor of heat and electricity, ultraporous with well-integrated hierarchical structure and non-corrosive in nature. In this review, the recent advancements of HER and OER electrocatalysts grown on copper-based substrates has been critically discussed, focusing on their morphology, design, and preparation methods of the nanoarrays.

2.
ACS Omega ; 8(33): 29910-29925, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636957

RESUMO

Multiwalled carbon nanotubes (MWCNTs) were employed as added particles for nanofluids in this practical investigation. To identify the most appropriate nanofluid for cooling PVT systems that are functional in the extreme summer environment of Baghdad, the parameters of base fluid, surfactant, and sonication time used for mixing were examined. Water was chosen as the base fluid instead of other potential candidates such as ethylene glycol (EG), propylene glycol (PG), and heat transfer oil (HTO). Thermal conductivity and stability were important thermophysical qualities that were impacted by the chosen parameters. The nanofluid tested in Baghdad city (consisting of 0.5% MWCNTs, water, and CTAB with a sonication period of three and a quarter hours) resulted in a 119.5, 308, and 210% enhancement of thermal conductivity (TC) for water compared with EG, PG, and oil, respectively. In addition, the nanofluid-cooled PVT system had an electrical efficiency that was 88.85% higher than standalone PV technology and 44% higher than water-cooled PVT systems. Moreover, the thermal efficiency of the nanofluid-cooled PVT system was 20% higher than the water-cooled PVT system. Finally, the nanofluid-cooled PVT system displayed the least decrease in electrical efficiency and a greater thermal efficiency even when the PV panel was at its hottest at noon.

3.
Heliyon ; 9(6): e17038, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484325

RESUMO

Solar irradiation data is essential for the feasibility of solar energy projects. Notably, the intermittent nature of solar irradiation influences solar energy use in all forms, whether energy or agriculture. Accurate solar irradiation prediction is the only solution to effectively use solar energy in different forms. The estimation of solar irradiation is the most critical factor for site selection and sizing of solar energy projects and for selecting a suitable crop selection for the area. But the physical measurement of solar irradiation, due to the cost and technology involved, is not possible for all locations across the globe. Numerous techniques have been implemented to predict solar irradiation for this purpose. The two types of approaches that are most frequently employed are empirical techniques and artificial intelligence (AI). Both approaches have demonstrated good accuracy in various places of the world. To find out the best method, a thorough review of research articles discussing solar irradiation prediction has been done to compare different methods for solar irradiation prediction. In this paper, articles predicting solar irradiation using AI and empirical published from 2017 to 2022 have been reviewed, and both methods have been compared. The review showed that AI methods are more accurate than empirical methods. In empirical models, modified sunshine-based models (MSSM) have the highest accuracy, followed by sunshine-based (SSM) and non-sunshine-based models (NSM). The NSM has a little lower accuracy than MSSM and SSM, but the NSM can give good results in sunshine data unavailability. Also, the literature review confirmed that simple empirical models could predict accurately, and increasing the empirical model's polynomial order cannot improve results. Artificial neural networks (ANN) and Hybrid models have the highest accuracy among AI methods, followed by support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS). The increase in efficiency by hybrid models is minimal, but the complexity of models requires very sophisticated programming knowledge. ANN's most important input factors are maximum and minimum temperatures, temperature differential, relative humidity, clearness index and precipitation.

4.
Heliyon ; 9(3): e14661, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37020933

RESUMO

Global solar radiation can theoretically be approximated in terms of tilt and azimuth of the surface regarding the impossibility of simultaneous measurement of solar radiation at various surface tilt and azimuth angles. Moreover, the random and anisotropic nature of diffuse radiation in a tropical climate makes it extremely difficult to estimate global solar radiation accurately as a function of surface tilt and azimuth angles. This study aims to develop a novel experimental and theoretical approach in the form of a computational network in order to determine a precise combined model integrated with global horizontal solar radiation to evaluate global tilted solar radiation in a tropical climate. Obtained results revealed that precisely estimation of the global tilted solar radiation was possible, by combining geometric factors for the tilted beam solar radiation, a combination of Gueymard and Louche models for the tilted diffuse solar radiation, and isotropic ground reflectance model for the ground reflected radiation, along with global horizontal solar radiation. It was observed that the accuracy of the model developed was higher for the partly sunny sky compared to the cloudy and rainy sky, estimates were more accurate on south-facing surfaces, and the model's accuracy declined with the increasing tilt angle of the surface. The statistical analysis exhibited excellent agreement between the measured data and simulation results, considering the value of normalized mean absolute error (nMAE %), normalized root mean squared error (nRMSE %), and mean absolute percentage error (MAPE %), which were in the ranges 0.22-0.94, 0.27-1.11, and 0.23-1.02, respectively for estimating global tilted solar radiation in various regions of Peninsular Malaysia, and they were respectively found in the range of 10.2-27.5%, 16.1-38.9%, and 6.0-17.8%, for evaluating the monthly optimum tilt angle towards the south, that leads to a loss of solar energy from 1.3 to 5.4 kWh/m2/year in Peninsular Malaysia. This search revealed that the experimental and theoretical approach employed in this study can be extended to more climatic regions.

5.
Environ Sci Pollut Res Int ; 30(34): 81474-81492, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36689112

RESUMO

The bi-fluid photovoltaic thermal (PVT) collector was introduced to provide more heating options along with improved cooling capabilities for the PV module. Since its introduction, this type of PVT system has been investigated thoroughly in various original works. In this review paper, we intend to put the concept and applications of this technology into question and revise the main achievements and discoveries through research and development with a focus on climatic and operational parameters. The paper encompasses a critical review of the discussed research and future directions for PVT collectors. The main utilized operational modes are discussed in detail, which are (i) water used in both channels, (ii) water in one channel and air in the other, and (iii) air in both channels. The modes were found to lead to different enhancement and performance effects for the utilized photovoltaic modules. The impact of mass flow rate was also taken by keeping one working fluid constant while varying the other to obtain its impact on the energy and exergy efficiency of the collector. In some cases, the fluids were run simultaneously and, in other cases, independently.


Assuntos
Temperatura Baixa , Calefação , Transição de Fase , Tecnologia , Água
6.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234594

RESUMO

Tungsten oxide (WOx) thin films were synthesized through the RF magnetron sputtering method by varying the sputtering power from 30 W to 80 W. Different investigations have been conducted to evaluate the variation in different morphological, optical, and dielectric properties with the sputtering power and prove the possibility of using WOx in optoelectronic applications. An Energy Dispersive X-ray (EDX), stylus profilometer, and atomic force microscope (AFM) have been used to investigate the dependency of morphological properties on sputtering power. Transmittance, absorbance, and reflectance of the films, investigated by Ultraviolet-Visible (UV-Vis) spectroscopy, have allowed for further determination of some necessary parameters, such as absorption coefficient, penetration depth, optical band energy gap, refractive index, extinction coefficient, dielectric parameters, a few types of loss parameters, etc. Variations in these parameters with the incident light spectrum have been closely analyzed. Some important parameters such as transmittance (above 80%), optical band energy gap (~3.7 eV), and refractive index (~2) ensure that as-grown WOx films can be used in some optoelectronic applications, mainly in photovoltaic research. Furthermore, strong dependencies of all evaluated parameters on the sputtering power were found, which are to be of great use for developing the films with the required properties.

7.
Materials (Basel) ; 15(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35888490

RESUMO

The silicon heterojunction solar cell (SHJ) is considered the dominant state-of-the-art silicon solar cell technology due to its excellent passivation quality and high efficiency. However, SHJ's light management performance is limited by its narrow optical absorption in long-wave near-infrared (NIR) due to the front, and back tin-doped indium oxide (ITO) layer's free carrier absorption and reflection losses. Despite the light-trapping efficiency (LTE) schemes adopted by SHJ in terms of back surface texturing, the previous investigations highlighted the ITO layer as a reason for an essential long-wavelength light loss mechanism in SHJ solar cells. In this study, we propose the use of Molybdenum disulfide (MoS2) as a way of improving back-reflection in SHJ. The text presents simulations of the optical response in the backside of the SHJ applying the Monte-Carlo raytracing method with a web-based Sunsolve high-precision raytracing tool. The solar cells' electrical parameters were also resolved using the standard electrical equivalent circuit model provided by Sunsolve. The proposed structure geometry slightly improved the SHJ cell optical current density by ~0.37% (rel.), and hence efficiency (η) by about 0.4% (rel.). The SHJ cell efficiency improved by 21.68% after applying thinner back ITO of about 30 nm overlayed on ~1 nm MoS2. The efficiency improvement following the application of MoS2 is tentatively attributed to the increased NIR absorption in the silicon bulk due to the light constructive interface with the backside components, namely silver (Ag) and ITO. Study outcomes showed that improved SHJ efficiency could be further optimized by addressing front cell components, mainly front ITO and MoS2 contact engineering.

8.
Philos Trans A Math Phys Eng Sci ; 380(2221): 20210132, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35220765

RESUMO

Malaysia is a net importer of coal, petroleum products and piped natural gas. Moreover, its primary energy supply is dominated by fossil fuels, at about 93% in total, with coal and natural gas constituting the highest shares in electricity generation. Thus, there is need for Malaysia to take swift action in transitioning to a high renewable energy system for long-term sustainability and meeting its climate action commitment under the Paris Agreement. A net-zero emissions vision guided by a roadmap may effectively motivate and catalyse carbon-free energy deployments. In this paper, we revisit the carbon-free energy roadmap that was developed in 2015 and compare it with the current generation development plan to identify the gaps between them. We argue that the roadmap is still relevant to the net-zero emissions vision; however, we have also identified gaps that merit further research and improvement. The identified gaps mainly relate to more recent data, along with technology and policy developments. Accordingly, we put forward potential research suggestions to bridge these gaps for future development of a roadmap that would assist Malaysia in shaping a long-term plan towards realizing a high renewable net-zero power generation system. This article is part of the theme issue 'Developing resilient energy systems'.


Assuntos
Combustíveis Fósseis , Energia Renovável , Dióxido de Carbono , Carvão Mineral , Eletricidade , Malásia
9.
Front Chem ; 10: 1074581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688050

RESUMO

This article deals with the impact of including transverse ribs within the absorber tube of the concentrated linear Fresnel collector (CLFRC) system with a secondary compound parabolic collector (CPC) on thermal and flow performance coefficients. The enhancement rates of heat transfer due to varying governing parameters were compared and analyzed parametrically at Reynolds numbers in the range 5,000-13,000, employing water as the heat transfer fluid. Simulations were performed to solve the governing equations using the finite volume method (FVM) under various boundary conditions. For all Reynolds numbers, the average Nusselt number in the circular tube in the CLFRC system with ribs was found to be larger than that of the plain absorber tube. Also, the inclusion of transverse ribs inside the absorber tube increases the average Nusselt number by approximately 115% at Re = 5,000 and 175% at Re = 13,000. For all Reynolds numbers, the skin friction coefficient of the circular tube with ribs in the CLFRC system is larger than that of the plain absorber tube. The coefficient of surface friction reduces as the Reynolds number increases. The performance assessment criterion was found to vary between 1.8 and 1.9 as the Reynolds number increases.

10.
Nanomaterials (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34947535

RESUMO

The unprecedented development of perovskite-silicon (PSC-Si) tandem solar cells in the last five years has been hindered by several challenges towards industrialization, which require further research. The combination of the low cost of perovskite and legacy silicon solar cells serve as primary drivers for PSC-Si tandem solar cell improvement. For the perovskite top-cell, the utmost concern reported in the literature is perovskite instability. Hence, proposed physical loss mechanisms for intrinsic and extrinsic instability as triggering mechanisms for hysteresis, ion segregation, and trap states, along with the latest proposed mitigation strategies in terms of stability engineering, are discussed. The silicon bottom cell, being a mature technology, is currently facing bottleneck challenges to achieve power conversion efficiencies (PCE) greater than 26.7%, which requires more understanding in the context of light management and passivation technologies. Finally, for large-scale industrialization of the PSC-Si tandem solar cell, the promising silicon wafer thinning, and large-scale film deposition technologies could cause a shift and align with a more affordable and flexible roll-to-roll PSC-Si technology. Therefore, this review aims to provide deliberate guidance on critical fundamental issues and configuration factors in current PSC-Si tandem technologies towards large-scale industrialization. to meet the 2031 PSC-Si Tandem road maps market target.

11.
Nanomaterials (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206518

RESUMO

Tungsten disulfide (WS2) thin films were deposited on soda-lime glass (SLG) substrates using radio frequency (RF) magnetron sputtering at different Ar flow rates (3 to 7 sccm). The effect of Ar flow rates on the structural, morphology, and electrical properties of the WS2 thin films was investigated thoroughly. Structural analysis exhibited that all the as-grown films showed the highest peak at (101) plane corresponds to rhombohedral phase. The crystalline size of the film ranged from 11.2 to 35.6 nm, while dislocation density ranged from 7.8 × 1014 to 26.29 × 1015 lines/m2. All these findings indicate that as-grown WS2 films are induced with various degrees of defects, which were visible in the FESEM images. FESEM images also identified the distorted crystallographic structure for all the films except the film deposited at 5 sccm of Ar gas flow rate. EDX analysis found that all the films were having a sulfur deficit and suggested that WS2 thin film bears edge defects in its structure. Further, electrical analysis confirms that tailoring of structural defects in WS2 thin film can be possible by the varying Ar gas flow rates. All these findings articulate that Ar gas flow rate is one of the important process parameters in RF magnetron sputtering that could affect the morphology, electrical properties, and structural properties of WS2 thin film. Finally, the simulation study validates the experimental results and encourages the use of WS2 as a buffer layer of CdTe-based solar cells.

12.
Environ Technol Innov ; 23: 101797, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34307792

RESUMO

The COVID-19 pandemic has affected not only human health and economies but also the environment due to the large volume of waste in the form of discarded personal protective equipment. The remarkable increase in the global usage of face masks, which mainly contain polypropylene, and improper waste management have led to a serious environmental challenge called microplastic pollution. Potential practices for waste management related to waste valorization of discarded face masks as the major type of waste during the COVID-19 pandemic are explored in this study. Recommendations based on governmental practices, situation of state facilities, and societal awareness and engagement applicable to emergency (including COVID-19 pandemic) and postpandemic scenarios are offered while considering potential solutions and available waste management practices in different countries during emergency conditions. However, multicriteria decision making for a country must determine the optimal solution for waste management on the basis of all affecting factors. Awareness of scientific, governments, and communities worldwide will successfully eradicate this important environmental issue.

13.
Polymers (Basel) ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32972016

RESUMO

A starch-resorcinol-formaldehyde (RF)-lithium triflate (LiTf) based biodegradable polymer electrolyte membrane was synthesized via the solution casting technique. The formation of RF crosslinks in the starch matrix was found to repress the starch's crystallinity as indicated by the XRD data. Incorporation of the RF plasticizer improved the conductivity greatly, with the highest room-temperature conductivity recorded being 4.29 × 10-4 S cm-1 achieved by the starch:LiTf:RF (20 wt.%:20 wt.%:60 wt.%) composition. The enhancement in ionic conductivity was an implication of the increase in the polymeric amorphous region concurrent with the suppression of the starch's crystallinity. Chemical complexation between the plasticizer, starch, and lithium salt components in the electrolyte was confirmed by FTIR spectra.

14.
Micromachines (Basel) ; 11(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295311

RESUMO

This paper discusses the behaviour of different thermophysical properties of CuO water-based nanofluids, including the thermal and hydraulic performance and pumping power. Different experimental and theoretical studies that investigated each property of CuO/water in terms of thermal and fluid mechanics are reviewed. Classical theories cannot describe the thermal conductivity and viscosity. The concentration, material, and size of nanoparticles have important roles in the heat transfer coefficient of CuO/water nanofluids. Thermal conductivity increases with large particle size, whereas viscosity increases with small particle size. The Nusselt number depends on the flow rate and volume fraction of nanoparticles. The causes for these behaviour are discussed. The magnitude of heat transfer rate is influenced by the use of CuO/water nanofluids. The use of CuO/water nanofluids has many issues and challenges that need to be classified through additional studies.

15.
Polymers (Basel) ; 12(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120814

RESUMO

This work is a pioneer attempt to fabricate quasi-solid dye-sensitized solar cell (QSDDSC) based on organosoluble starch derivative. Rheological characterizations of the PhSt-HEC blend based gels exhibited viscoelastic properties favorable for electrolyte fabrication. From amplitude sweep and tack test analyses, it was evident that the inclusion of LiI improved the rigidity and tack property of the gels. On the other hand, the opposite was true for TPAI based gels, which resulted in less rigid and tacky electrolytes. The crystallinity of the gels was found to decline with increasing amount of salt in both systems. The highest photoconversion efficiency of 3.94% was recorded upon addition of 12.5 wt % TPAI and this value is one of the highest DSSC performance recorded for starch based electrolytes. From electrochemical impedance spectroscopy (EIS), it is deduced that the steric hindrance imposed by bulky cations aids in hindering recombination between photoanode and electrolyte.

16.
Materials (Basel) ; 10(8)2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763048

RESUMO

This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

17.
Artigo em Inglês | MEDLINE | ID: mdl-28213142

RESUMO

Current study employs mixture of chlorophyll-anthocyanin dye extracted from leaves of Cordyline fruticosa as new sensitizers for dye-sensitized solar cell (DSSCs), as well as betalains dye obtained from fruit of Hylocereus polyrhizus. Among ten pigments solvents, the ethanol and methanol extracts revealed higher absorption spectra of pigments extracted from C. fruticosa and H. polyrhizus respectively. A major effect of temperature increase was studied to increase the extraction yield. The results indicated that extraction temperature between 70 and 80°C exhibited a high dye concentration of each plant than other temperatures. The optimal temperature was around 80°C and there was a sharp decrease of dye concentration at temperatures higher than this temperature. According to experimental results, the conversion efficiency of DSSC fabricated by mixture of chlorophyll and anthocyanin dyes from C. fruticosa leaves is 0.5% with short-circuit current (Isc) of 1.3mA/cm-2, open-circuit voltage (Voc) of 0.62V and fill factor (FF) of 60.16%. The higher photoelectric conversion efficiency of the DSSC prepared from the extract of H. polyrhizus was 0.16%, with Voc of 0.5V, Isc of 0.4mA/cm-2 and FF of 79.16%. The DSSC based betalain dye extracted from fruit of H. polyrhizus shows higher maximum IPCE of 44% than that of the DSSCs sensitized with mixed chlorophyll-anthocyanin dye from C. fruticosa (42%).


Assuntos
Cactaceae/química , Corantes/química , Cordyline/química , Pigmentos Biológicos/isolamento & purificação , Energia Solar , Clorofila/química , Eletroquímica , Elétrons , Fótons , Solventes , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Titânio/química , Difração de Raios X
18.
Chem Rec ; 16(2): 614-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26816190

RESUMO

Third-generation solar cells are understood to be the pathway to overcoming the issues and drawbacks of the existing solar cell technologies. Since the introduction of graphene in solar cells, it has been providing attractive properties for the next generation of solar cells. Currently, there are more theoretical predictions rather than practical recognitions in third-generation solar cells. Some of the potential of graphene has been explored in organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs), but it has yet to be fully comprehended in the recent third-generation inorganic-organic hybrid perovskite solar cells. In this review, the diverse role of graphene in third-generation OPVs and DSSCs will be deliberated to provide an insight on the prospects and challenges of graphene in inorganic-organic hybrid perovskite solar cells.

19.
Chem Soc Rev ; 44(23): 8424-42, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446476

RESUMO

This tutorial review considers defect chemistry of TiO2 and its solid solutions as well as defect-related properties associated with solar-to-chemical energy conversion, such as Fermi level, bandgap, charge transport and surface active sites. Defect disorder is discussed in terms of defect reactions and the related charge compensation. Defect equilibria are used in derivation of defect diagrams showing the effect of oxygen activity and temperature on the concentration of both ionic and electronic defects. These defect diagrams may be used for imposition of desired semiconducting properties that are needed to maximize the performance of TiO2-based photoelectrodes for the generation of solar hydrogen fuel using photo electrochemical cells (PECs) and photocatalysts for water purification. The performance of the TiO2-based semiconductors is considered in terms of the key performance-related properties (KPPs) that are defect related. It is shown that defect engineering may be applied for optimization of the KPPs in order to achieve optimum performance.

20.
ScientificWorldJournal ; 2014: 767614, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672370

RESUMO

Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.


Assuntos
Temperatura Alta , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...