Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Br J Pharmacol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720437

RESUMO

Noncoding RNAs (ncRNAs) are pivotal for various pathological processes, impacting disease progression. The potential for leveraging ncRNAs to prevent or treat atherosclerosis and associated cardiovascular diseases is of great significance, especially given the increasing prevalence of atherosclerosis in an ageing and sedentary population. Together, these diseases impose a substantial socio-economic burden, demanding innovative therapeutic solutions. This review explores the potential of ncRNAs in atherosclerosis treatment. We commence by examining approaches for identifying and characterizing atherosclerosis-associated ncRNAs. We then delve into the functional aspects of ncRNAs in atherosclerosis development and progression. Additionally, we review current RNA and RNA-targeting molecules in development or under approval for clinical use, offering insights into their pharmacological potential. The importance of improved ncRNA delivery strategies is highlighted. Finally, we suggest avenues for advanced research to accelerate the use of ncRNAs in treating atherosclerosis and mitigating its societal impact.

2.
Clin Chem Lab Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38747410

RESUMO

The development of microRNA (miRNA)-based biomarkers has gained significant attention due to their potential diagnostic, prognostic and therapeutic applications. However, the reproducibility of miRNA biomarker research faces unique challenges, primarily due to the influence of pre-analytical and analytical factors. The absence of standardized procedures contributes to inconsistencies across studies, alongside challenges in reference gene selection, data analysis methods and miRNA profiling platforms. Inter-laboratory comparison trials, or ring trials, offer a strategic approach to address technical and biological variability in miRNA biomarker studies. These trials promote standardization, identify sources of variability and strengthen the correlation between miRNAs and clinical outcomes. Despite their underutilization in miRNA biomarker research, ring trials represent a valuable tool for enhancing reproducibility and expediting the translation of miRNA-based biomarkers into clinical applications.

3.
5.
Int Urol Nephrol ; 56(2): 615-623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37410303

RESUMO

PURPOSE: End-stage renal disease patients on chronic hemodialysis (HD) have a shortened life expectancy compared to the general population. The aim of this study was to evaluate a possible link between three new and emerging factors in renal pathophysiology: Klotho protein, telomere length in peripheral blood mononuclear cells (TL) and redox status parameters before HD (bHD) and after HD (aHD), and to test mortality prediction capability of these emerging parameters in a population of HD patients. METHODS: The study included 130 adult patients with average age 66 (54-72), on HD (3 times per week; 4-5 h per session). Klotho level, TL, routine laboratory parameters, dialysis adequacy and redox status parameters: advanced oxidation protein products (AOPP), prooxidant-antioxidant balance (PAB), superoxide anion (O2.-), malondialdehyde (MDA), ischemia-modified albumin (IMA), total sulfhydryl group content (SHG), and superoxide dismutase (SOD) were determined. RESULTS: Klotho concentration was significantly higher aHD; 68.2 (22.6-152.9) vs. bHD 64.2 (25.5-119.8) (p = 0.027). The observed increase in TL was not statistically significant. AOPP, PAB, SHG, and SOD activity were significantly increased aHD (p > 0.001). The patients with the highest mortality risk score (MRS) had significantly higher PAB bHD (p = 0.002). Significantly lower O2.- (p < 0.001), SHG content (p = 0.072), and IMA (p = 0.002) aHD were found in patients with the lowest MRS values. Principal component analysis revealed redox balance-Klotho factor as a significant predictor of high mortality risk (p = 0.014). CONCLUSION: Decreased Klotho and TL attrition as well as redox status disturbance could be connected with higher mortality rate in HD patients.


Assuntos
Antioxidantes , Falência Renal Crônica , Adulto , Humanos , Idoso , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Estresse Oxidativo , Biomarcadores , Produtos da Oxidação Avançada de Proteínas/metabolismo , Leucócitos Mononucleares/química , Leucócitos Mononucleares/metabolismo , Albumina Sérica/metabolismo , Diálise Renal , Superóxido Dismutase
6.
Folia Biol (Praha) ; 69(2): 59-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38063002

RESUMO

Lung cancer (LC) is the second most common malignancy and leading cause of cancer death. The potential "culprit" for local and systemic telomere shortening in LC patients is oxidative stress. We investigated the correlation between the peripheral blood leukocyte (PBL) telomere length (TL) and the presence/severity of LC and oxidative stress, and its usefulness as LC diagnostic marker. PBL TL was measured in 89 LC patients and 83 healthy subjects using the modified Cawthon RTq-PCR method. The relative PBL TL, found to be a potential diagnostic marker for LC with very good accuracy (P < 0.001), was significantly shorter in patients compared to the control group (CG) (P < 0.001). Significantly shorter telomeres were found in patients with LC TNM stage IV than in patients with stages I-III (P = 0.014), in patients without therapy compared to those on therapy (P = 0.008), and in patients with partial response and stable/progressive disease compared to those with complete response (P = 0.039). The total oxidant status (TOS), advanced oxidation protein products (AOPP), prooxidant-antioxidant balance (PAB) and C-reactive protein (CRP) were significantly higher in patients compared to CG (P < 0.001) and correlated negatively with TL in both patients and CG (P < 0.001). PCA showed a relation between PAB and TL, and between the EGFR status and TL. Oxidative stress and PBL telomere shortening are probably associated with LC development and progression.


Assuntos
Neoplasias Pulmonares , Encurtamento do Telômero , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Análise de Componente Principal , Leucócitos/metabolismo , Estresse Oxidativo , Telômero
7.
Trends Mol Med ; 29(12): 983-995, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806854

RESUMO

Multiomics studies offer accurate preventive and therapeutic strategies for atherosclerotic cardiovascular disease (ASCVD) beyond traditional risk factors. By using artificial intelligence (AI) and machine learning (ML) approaches, it is possible to integrate multiple 'omics and clinical data sets into tools that can be utilized for the development of personalized diagnostic and therapeutic approaches. However, currently multiple challenges in data quality, integration, and privacy still need to be addressed. In this opinion, we emphasize that joined efforts, exemplified by the AtheroNET COST Action, have a pivotal role in overcoming the challenges to advance multiomics approaches in ASCVD research, with the aim to foster more precise and effective patient care.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Inteligência Artificial , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Multiômica , Aterosclerose/diagnóstico , Aterosclerose/genética , Aterosclerose/terapia , Aprendizado de Máquina
8.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762611

RESUMO

In the present study, we examined redox status parameters in arterial and venous blood samples, its potential to predict the prognosis of acute myocardial infarction (AMI) patients assessed through its impact on the comprehensive grading SYNTAX score, and its clinical accuracy. Potential connections between common blood biomarkers, biomarkers of redox status, leukocyte telomere length, and telomerase enzyme activity in the acute myocardial infarction burden were assessed using principal component analysis (PCA). This study included 92 patients with acute myocardial infarction. Significantly higher levels of advanced oxidation protein products (AOPP), superoxide anion (O2•-), ischemia-modified albumin (IMA), and significantly lower levels of total oxidant status (TOS) and total protein sulfhydryl (SH-) groups were found in arterial blood than in the peripheral venous blood samples, while biomarkers of the telomere-telomerase system did not show statistical significance in the two compared sample types (p = 0.834 and p = 0.419). To better understand the effect of the examined biomarkers in the AMI patients on SYNTAX score, those biomarkers were grouped using PCA, which merged them into the four the most contributing factors. The "cholesterol-protein factor" and "oxidative-telomere factor" were independent predictors of higher SYNTAX score (OR = 0.338, p = 0.008 and OR = 0.427, p = 0.035, respectively), while the ability to discriminate STEMI from non-STEMI patients had only the "oxidative-telomere factor" (AUC = 0.860, p = 0.008). The results show that traditional cardiovascular risk factors, i.e., high total cholesterol together with high total serum proteins and haemoglobin, are associated with severe disease progression in much the same way as a combination of redox biomarkers (pro-oxidant-antioxidant balance, total antioxidant status, IMA) and telomere length.


Assuntos
Infarto do Miocárdio , Telomerase , Humanos , Antioxidantes , Biomarcadores , Albumina Sérica , Oxirredução
9.
Cells ; 12(14)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37508497

RESUMO

Current clinical data show that, despite constant efforts to develop novel therapies and clinical approaches, atherosclerotic cardiovascular diseases (ASCVD) are still one of the leading causes of death worldwide. Advanced and unstable atherosclerotic plaques most often trigger acute coronary events that can lead to fatal outcomes. However, despite the fact that different plaque phenotypes may require different treatments, current approaches to prognosis, diagnosis, and classification of acute coronary syndrome do not consider the diversity of plaque phenotypes. Long non-coding RNAs (lncRNAs) represent an important class of molecules that are implicated in epigenetic control of numerous cellular processes. Here we review the latest knowledge about lncRNAs' influence on plaque development and stability through regulation of immune response, lipid metabolism, extracellular matrix remodelling, endothelial cell function, and vascular smooth muscle function, with special emphasis on pro-atherogenic and anti-atherogenic lncRNA functions. In addition, we present current challenges in the research of lncRNAs' role in atherosclerosis and translation of the findings from animal models to humans. Finally, we present the directions for future lncRNA-oriented research, which may ultimately result in patient-oriented therapeutic strategies for ASCVD.


Assuntos
Aterosclerose , Placa Aterosclerótica , RNA Longo não Codificante , Animais , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Células Endoteliais/metabolismo
10.
Basic Res Cardiol ; 118(1): 16, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140699

RESUMO

The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Metilação de DNA , Epigênese Genética , Insuficiência Cardíaca/genética , Doenças Cardiovasculares/genética , Coração
12.
Arch Med Sci ; 19(2): 313-323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034531

RESUMO

Introduction: Telomeres are protective chromosomal ends. Short telomeres are a proven biomarker of biological aging. We aimed to find an association of telomere length and telomerase activity in circulating leukocytes and thromboaspirates of patients with acute myocardial infarction. Furthermore, association of the telomere-telomerase system with oxidative stress markers (as common risk factors for coronary artery disease (CAD)) was tested. Material and methods: Patients were selected from the patients admitted to the intensive care unit with acute myocardial infarction with ST-segment elevation (STEMI), with the following inclusion criteria - STEMI patients between 18 and 80 years old of both genders and candidates for primary percutaneous coronary intervention, with infarction pain present for a maximum of 12 h. In all the patients leukocyte telomere length, telomerase activity and scores related to oxidative-stress status (Protective, Damage and OXY) were evaluated. Results: Patients were divided into different groups: with stable angina pectoris (AP) (n = 22), acute myocardial infarction with: STEMI (n = 93), non-obstructive coronary arteries (MINOCA) (n = 7), blood vessel rupture (n = 6) at three time points, and compared to the group of 84 healthy subjects. Telomerase activity was significantly higher in all CAD sub-groups compared to the control group (AP = 0.373 (0.355-0.386), STEMI = 0.375 (0.349-0.395), MINOCA = 0.391 (0.366-0.401), blood vessel rupture = 0.360 (0.352-0.385) vs. CG = 0.069 (0.061-0.081), p < 0.001), while telomeres were significantly shorter in STEMI, MINOCA and blood vessel rupture groups compared to the control group (STEMI = 1.179 (0.931-1.376), MINOCA = 1.026 (0.951-1.070), blood vessel rupture = 1.089 (0.842-1.173) vs. CG = 1.329 (1.096-1.624), p = 0.030]. Values of OXY score were significantly higher in STEMI and MINOCA patients compared to the control group and AP patients (5.83 (4.55-7.54) and 10.28 (9.19-10.72) vs. 4.94 (3.29-6.18) and 4.18 (2.58-4.86), p < 0.001). Longer telomeres and higher telomerase activity were found in thromboaspirates, compared to the peripheral blood leukocytes in the same patients (1.25 (1.01-1.84) vs. 1.18 (0.909-1.516), p = 0.036; and 0.366 (0.367-0.379) vs. 0.366 (0.367-0.379), p < 0.001, respectively). In addition, telomere length and telomerase activity had good diagnostic ability to separate STEMI patients from healthy persons. Conclusions: Leukocyte telomere length and telomerase activity can differentiate CAD patients from healthy persons, and relate CAD to oxidative stress.

13.
Sleep Breath ; 27(5): 2031-2039, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36917442

RESUMO

PURPOSE: Obstructive sleep apnea (OSA) is characterised by increased systemic inflammation, and is often accompanied with type 2 diabetes mellitus (T2DM) and cardiovascular disease. The aim of this investigation was to evaluate gene expression of resistin, its receptor CAP1 and CD36 as the indicators of the inflammatory changes in PBMCs in relation to the severity of OSA, and the presence of type 2 diabetes mellitus (T2DM) in OSA. METHODS: Severity of OSA was defined by the apnea/hypopnea index (AHI): AHI < 30: mild to moderate OSA (MM-OSA), AHI ≥ 30: severe OSA (S-OSA). Presence of T2DM was captured: OSA with T2DM (OSA + T2DM), OSA without T2DM (OSA-T2DM). PBMC resistin, CAP1, and CD36 mRNA were determined by real-time PCR. RESULTS: Resistin mRNA was significantly upregulated in S-OSA (N = 54) compared to the MM-OSA (N = 52, P = 0.043); CAP1 and CD36 mRNA levels did not differ between the groups (P = 0.302; P = 0.166, respectively). Resistin mRNA was significantly upregulated in OSA + T2DM (N = 29) compared to the OSA-T2DM (N = 77, P = 0.029); CAP1 and CD36 mRNA levels did not differ between the groups (P = 0.662; P = 0.108, respectively). AHI and T2DM were independent predictors of resistin mRNA above the 75th percentile (OR = 3.717 [1.152-11.991]; OR = 3.261 [1.000-10.630], P = 0.042 respectively). CONCLUSION: Resistin gene upregulation in S-OSA indicates its possible contribution to increased inflammation in S-OSA and makes it a possible marker of the disease severity. Resistin gene upregulation in OSA + T2DM suggests that a joint effect of these two comorbidities may have a major contribution to increased inflammation and complications that arise from this state.


Assuntos
Diabetes Mellitus Tipo 2 , Apneia Obstrutiva do Sono , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Leucócitos Mononucleares , Regulação para Cima/genética , Resistina/genética , Inflamação/complicações , Apneia Obstrutiva do Sono/complicações , RNA Mensageiro , Expressão Gênica/genética
14.
Open Res Eur ; 3: 55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38689633

RESUMO

Soft skills are the elementary management, personal, and interpersonal abilities that are vital for an individual to be efficient at workplace or in their personal life. Each work place requires different set of soft skills. Thus, in addition to scientific/technical skills that are easier to access within a short time frame, several key soft skills are essential for the success of a researcher in today's international work environment. In this paper, the trainees and trainers of the EU-CardioRNA COST Action CA17129 training school on soft skills present basic and advanced soft skills for early career researchers. Here, we particularly emphasize on the importance of transferable and presentation skills, ethics, literature reading and reviewing, research protocol and grant writing, networking, and career opportunities for researchers. All these skills are vital but are often overlooked by some scholars. We also provide tips to ace in aforementioned skills that are crucial in a day-to-day life of early and late career researchers in academia and industry.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36429712

RESUMO

Adiponectin (ADIPOQ) as both a regulator of metabolic homeostasis and a protein involved in immune response might be of particular interest to contemporary laboratory medicine, especially in terms of minimally invasive diagnostics. The diverse roles of ADIPOQ with regard to the immune and metabolic aspects of colorectal carcinogenesis have been proposed. However, the expression of its receptors ADIPOR1 and ADIPOR2 is scarcely explored in peripheral blood mononuclear cells (PBMCs). Moreover, ADIPORs' relationships with the immune response mediator TNF-α have not been previously investigated in the PBMCs of CRC patients. This study used both in silico and observational case-control analyses with the aim of exploring the association of ADIPOR gene expression and ADIPOQ single nucleotide polymorphisms (SNPs) with the inflammatory marker TNF-α and lipid status parameters in patients with CRC. Publicly available transcriptomic datasets (GSE47756, GSE44076) obtained from analyses of monocytes and CRC tissue samples were employed for the in silico evaluation of ADIPORs' specific genetic traits. GSE47756 and GSE44076 datasets were processed with GSEA software to provide a genetic fingertip of different signaling pathways associated with ADIPORs' mRNA levels. The case-control aspect of the study included the PBMC samples of 73 patients diagnosed with CRC and 80 healthy volunteers. The PCR method was carried out for the PBMC gene expression analysis (ADIPOR1, ADIPOR2, TNF-α mRNA levels) and for the subjects' genotyping (ADIPOQ rs266729, ADIPOR1 rs7539542). GSEA showed significant associations of ADIPOR mRNA expression with gene sets related to metabolic and immune homeostasis in both datasets. The case-control study revealed the association of ADIPOR1 rs7539542 with reduced lipid status parameters in CRC. In addition, PBMC ADIPOR1 mRNA levels decreased in CRC (p < 0.001), whereas ADIPOR2 mRNA did not differ between the groups (p = 0.442). A reduction in PBMC TNF-α mRNA levels was noted in CRC (p < 0.05). Our results indicate that ADIPOR1 and ADIPOR2 play a significant role in the alteration of both metabolic and immune homeostasis during the progression of CRC. For the first time, ADIPOR1 is shown to be a specific receptor for mediating ADIPOQ's effects in the PBMCs of CRC patients.


Assuntos
Neoplasias Colorretais , Receptores de Adiponectina , Humanos , Adiponectina , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Homeostase , Leucócitos Mononucleares/metabolismo , Lipídeos , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética
16.
J Med Biochem ; 41(3): 282-289, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36042901

RESUMO

Background: Type 1 diabetes mellitus (T1DM) is one of the most common endocrine diseases in children. T-cell autoreactivity toward b-cells is controlled by significant changes in metabolism of T cells. Mammalian target of rapamycin (mTOR) is an important intracellular regulator of metabolism and cell growth. MAPK/MAK/MRK overlapping kinase 1 (MOK1) is one of the less known regulators of mTOR. We sought to investigate if MOK1 and mTOR mRNA levels in peripheral blood mononuclear cells (PBMCs) of T1DM pediatric patients are different compared to healthy subjects. Methods: This study included 172 adolescents with T1DM and 36 healthy adolescent volunteers designated for control group (CG). MOK1 and mTOR mRNA levels were determined in PBMCs by qPCR. Results: T1DM patients have significant downregulation of MOK1 mRNA levels in PBMCs compared CG (P=0.018), while there was no significant difference in mTOR mRNA levels (P=0.891). Furthermore, in T1DM patients, MOK1 significantly correlated with age, triglycerides and mTOR, while mTOR correlated significantly with BMI and systolic blood pressure. Overweight T1DM subjects had significantly lower MOK1 (P=0.034) and mTOR (P=0.017) mRNA levels, together with significantly higher levels of systolic blood pressure (P<0.001), total cholesterol (P=0.001), LDL-cholesterol (P=0.001) and CRP (P<0.001). Multi - variate analysis showed that MOK1 was independently negatively associated with T1DM when adjusted for sex, age, HDL-C and CRP (OR=0.417 (95%CI: 0.175-0.997), p=0.049). Conclusions: Our study demonstrated for the first time that T1DM is associated with MOK1 downregulation. In addition, downregulation of both mTOR and MOK1 gene expressions was associated with cardiovascular risk factors in overweight T1DM patients.

17.
Trends Mol Med ; 28(8): 616-618, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35701316

RESUMO

In the past decade, significant resources have been invested in long noncoding RNA (lncRNA) research. Despite the knowledge available, we are far from incorporation of lncRNA into clinical practice. Here, we emphasize the technical challenges in the field, hoping to provoke a response leading to new consensus and guidelines.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
18.
Exp Gerontol ; 155: 111574, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601077

RESUMO

In this randomized controlled pilot trial, we investigated the effects of a 6-month intake of hydrogen-rich water (HRW) on several molecular and phenotypic biomarkers of aging in older adults aged 70 years and over. Forty older adults (20 women) were randomly allocated in a parallel-group design to receive 0.5 L per day of HRW (15 ppm of hydrogen) or control drink (0 ppm of hydrogen) during a 6-month intervention period. The biomarkers assessed at baseline and 6-month follow up were molecular markers in the blood (DNA and chromosomes, nutrient sensing, protein, and lipid metabolism, oxidative stress and mitochondria, cell senescence, inflammation), brain metabolism, cognitive functioning, physical function and body composition, resting blood pressure, facial skin features, sleep outcomes, and health-related quality of life. The mean age, weight, and height of study participants were 76.0 ± 5.6 years, 78.2 ± 16.1 kg, height 167.5 ± 11.5 cm, respectively. A significant treatment vs. time interaction was found for telomere length (P = 0.049), with the length increased after HRW intervention (from 0.99 ± 0.15 at baseline to 1.02 ± 0.26 at follow up) and decreased after drinking control water (from 0.92 ± 0.27 to 0.79 ± 0.15). A marker of DNA methylation (Tet methylcytosine dioxygenase 2, TET2) expression at 6-month follow-up increased in both groups, yet the degree of elevation was significantly higher in HRW (from 0.81 ± 0.52 at baseline to 1.62 ± 0.66 at follow up) comparing to the control water (from 1.13 ± 0.82 to 1.76 ± 0.87) (P = 0.040). A strong trend for treatment vs. time interaction was found for a degree of DNA methylation (P = 0.166), with the methylation increased in the HRW group (from 120.6 ± 39.8 ng at baseline to 126.6 ± 33.8 ng at follow up) and decreased after taking control water (from 133.6 ± 52.9 ng to 121.2 ± 38.4 ng). HRW was superior to control water to increase brain choline and NAA levels in the left frontal grey matter, brain creatine at the right parietal white matter, and brain NAA at the right parietal mesial grey matter (P < 0.05). No significant differences were found between interventions for other outcomes (P > 0.05), except for a significantly improved chair stand performance after HRW intervention compared to the control water (P = 0.01). Owing to pleiotropic mechanisms of hydrogen action, this simple biomedical gas could be recognized as a possible anti-aging agent that tackles several hallmarks of aging, including loss of function and telomere length shortening. The study was registered at ClinicalTrials.gov (NCT04430803).


Assuntos
Ingestão de Líquidos , Hidrogênio , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Biomarcadores , Feminino , Humanos , Projetos Piloto , Qualidade de Vida
19.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638993

RESUMO

Preeclampsia (PE) is a leading cause of maternal and neonatal morbidity and mortality worldwide. Defects in trophoblast invasion, differentiation of extravillous trophoblasts and spiral artery remodeling are key factors in PE development. Currently there are no predictive biomarkers clinically available for PE. Recent technological advancements empowered transcriptome exploration and led to the discovery of numerous non-coding RNA species of which microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most investigated. They are implicated in the regulation of numerous cellular functions, and as such are being extensively explored as potential biomarkers for various diseases. Altered expression of numerous lncRNAs and miRNAs in placenta has been related to pathophysiological processes that occur in preeclampsia. In the following text we offer summary of the latest knowledge of the molecular mechanism by which lnRNAs and miRNAs (focusing on the chromosome 19 miRNA cluster (C19MC)) contribute to pathophysiology of PE development and their potential utility as biomarkers of PE, with special focus on sample selection and techniques for the quantification of lncRNAs and miRNAs in maternal circulation.


Assuntos
MicroRNA Circulante/sangue , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/diagnóstico , RNA Longo não Codificante/sangue , Biomarcadores/sangue , Diferenciação Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 19/metabolismo , MicroRNA Circulante/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Gravidez , RNA Longo não Codificante/genética , Transcriptoma , Trofoblastos/metabolismo
20.
Noncoding RNA ; 7(4)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34698214

RESUMO

The vascular endothelium comprises the interface between the circulation and the vessel wall and, as such, is under the dynamic regulation of vascular signalling, nutrients, and hypoxia. Understanding the molecular drivers behind endothelial cell (EC) and vascular smooth muscle cell (VSMC) function and dysfunction remains a pivotal task for further clinical progress in tackling vascular disease. A newly emerging era in vascular biology with landmark deep sequencing approaches has provided us with the means to profile diverse layers of transcriptional regulation at a single cell, chromatin, and epigenetic level. This review describes the roles of major vascular long non-coding RNA (lncRNAs) in the epigenetic regulation of EC and VSMC function and discusses the recent progress in their discovery, detection, and functional characterisation. We summarise new findings regarding lncRNA-mediated epigenetic mechanisms-often regulated by hypoxia-within the vascular endothelium and smooth muscle to control vascular homeostasis in health and disease. Furthermore, we outline novel molecular techniques being used in the field to delineate the lncRNA subcellular localisation and interaction with proteins to unravel their biological roles in the epigenetic regulation of vascular genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...