Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 237(0): 40-57, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35698996

RESUMO

Dimensionality plays a key role in the emergence of ordered phases, such as charge density-waves (CDW), which can couple to, and modulate, the topological properties of matter. In this work, we study the out-of-equilibrium dynamics of the paradigmatic quasi-one-dimensional material (TaSe4)2I, which exhibits a transition into an incommensurate CDW phase when cooled to just below room temperature, namely at TCDW = 263 K. We make use of both optical laser and free-electron laser (FEL) based time-resolved spectroscopies in order to study the effect of a selective excitation on the normal-state and on the CDW phases by probing the near-infrared/visible optical properties both along and perpendicularly to the direction of the CDW, where the system is metallic and insulating, respectively. Excitation of the core-levels by ultrashort X-ray FEL pulses at 47 eV and 119 eV induces reflectivity transients resembling those recorded when only exciting the valence band of the compound - by near-infrared pulses at 1.55 eV - in the case of the insulating sub-system. Conversely, the metallic sub-system displays relaxation dynamics which depend on the energy of photo-excitation. Moreover, excitation of the CDW amplitude mode is recorded only for excitation at a low-photon-energy. This fact suggests that the coupling of light to ordered states of matter can predominantly be achieved when directly injecting delocalized carriers in the valence band, rather than localized excitations in the core levels. Complementing this, table-top experiments allow us to prove the quasi-unidirectional nature of the CDW phase in (TaSe4)2I, whose fingerprints are detected along its c-axis only. Our results provide new insights into the symmetry of the ordered phase of (TaSe4)2I perturbed by a selective excitation, and suggest a novel approach based on complementary table-top and FEL spectroscopies for the study of complex materials.

2.
Opt Express ; 28(6): 8819-8829, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225500

RESUMO

Time-resolved optical spectroscopy (TR-OS) has emerged as a fundamental spectroscopic tool for probing complex materials, to both investigate ground-state-related properties and trigger phase transitions among different states with peculiar electronic and lattice structures. We describe a versatile approach to perform polarization-resolved TR-OS measurements, by combining broadband detection with the capability to simultaneously probe two orthogonal polarization states. This method allows us to probe, with femtoseconds resolution, the frequency-resolved reflectivity or transmittivity variations along two mutually orthogonal directions, matching the principal axis of the crystal structure of the material under scrutiny. We report on the results obtained by acquiring the polarization-dependent transient reflectivity of two polytypes of the MoTe2 compound, with 2H and 1T' crystal structures. We reveal marked anisotropies in the time-resolved reflectivity signal of 1T'-MoTe2, which are connected to the crystal structure of the compound. Polarization- and time- resolved spectroscopic measurements can thus provide information about the nature and dynamics of both the electronic and crystal lattice subsystems, advancing the comprehension of their inter-dependence, in particular in the case of photoinduced phase transitions; in addition, they provide a broadband measurement of transient polarization rotations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...